Suppr超能文献

用于水系锌离子电池阴极的插层钒酸钾纳米纤维复合材料导电聚合物的超声合成

Ultrasonic synthesis of conducting polymers intercalated potassium vanadate nanofiber composites as cathode for aqueous zinc-ion batteries.

作者信息

Han Juyeon, Park Yongyeol, Jeon Ok Sung, Hong Dongpyo, Piao Yuanzhe, Yoo Young Joon, Park Sang Yoon, Lee Se Hun, Yoo Jeeyoung

机构信息

School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.

Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do 16229, Republic of Korea.

出版信息

Ultrason Sonochem. 2025 Jul;118:107378. doi: 10.1016/j.ultsonch.2025.107378. Epub 2025 May 5.

Abstract

Aqueous zinc-ion batteries (AZIBs) have gained attention as next-generation energy storage systems due to their safety, cost-effectiveness, and eco-friendliness. However, their commercialization is hindered by the structural instability and low electrochemical performance of cathode materials. Herein, we present poly(3,4-ethylenedioxythiophene) (PEDOT)-intercalated potassium vanadate nanofibers (E-PVNF) with oxygen vacancies, synthesized via a sonochemical method. Oxygen vacancies play a crucial role in facilitating Zn diffusion and charge transport by providing additional ion migration channels and enhancing electronic conductivity. The E-PVNF exhibited a high specific capacity of 182.50mAh g even at a high current density of 15 A g, significantly outperforming conventional potassium vanadate-based cathodes. To investigate the electrochemical behavior, overpotential and Zn diffusion coefficient (D) were systematically evaluated as a function of synthesis time. The results revealed a substantial reduction in overpotential and a notable increase in D, reaching 3.86 × 10 cm s, nearly double that of pristine potassium vanadate. This improvement is attributed to the synergistic effects of PEDOT intercalation and oxygen vacancy engineering, which optimize Zn diffusion pathways and enhance charge transfer. Additionally, while oxygen vacancies facilitate ion and electron transport, they do not directly increase theoretical capacity. This study provides a scalable and effective electrode design strategy for high-performance AZIBs, offering insights into the role of conducting polymer intercalation and oxygen vacancy engineering in improving electrochemical stability and rate capability.

摘要

水系锌离子电池(AZIBs)因其安全性、成本效益和环境友好性而作为下一代储能系统受到关注。然而,其商业化受到阴极材料结构不稳定性和低电化学性能的阻碍。在此,我们展示了通过声化学方法合成的具有氧空位的聚(3,4-乙撑二氧噻吩)(PEDOT)插层钒酸钾纳米纤维(E-PVNF)。氧空位通过提供额外的离子迁移通道和增强电子导电性,在促进锌扩散和电荷传输方面起着关键作用。即使在15 A g的高电流密度下,E-PVNF仍表现出182.50 mAh g的高比容量,显著优于传统的钒酸钾基阴极。为了研究其电化学行为,系统地评估了过电位和锌扩散系数(D)作为合成时间的函数。结果表明,过电位大幅降低,D显著增加,达到3.86×10 cm² s,几乎是原始钒酸钾的两倍。这种改善归因于PEDOT插层和氧空位工程的协同效应,它们优化了锌扩散途径并增强了电荷转移。此外,虽然氧空位促进离子和电子传输,但它们不会直接增加理论容量。本研究为高性能AZIBs提供了一种可扩展且有效的电极设计策略,深入了解了导电聚合物插层和氧空位工程在改善电化学稳定性和倍率性能方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac6/12141844/f4a8c893bcdb/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验