Suppr超能文献

对TCR库分析的多样性度量的全面评估。

A comprehensive evaluation of diversity measures for TCR repertoire profiling.

作者信息

Mika Justyna, Polanska Alicja, Blenman Kim Rm, Pusztai Lajos, Polanska Joanna, Candéias Serge, Marczyk Michal

机构信息

Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland.

Mullard Space Science Laboratory, University College London, Dorking, UK.

出版信息

BMC Biol. 2025 May 14;23(1):133. doi: 10.1186/s12915-025-02236-5.

Abstract

BACKGROUND

T cells play a crucial role in adaptive immunity, as they monitor internal and external immunogenic signals through their specific receptors (TCRs). Using high-throughput sequencing, one can assess TCR repertoire in various clinical settings and describe it quantitatively by calculating a diversity index. Multiple diversity indices that capture the richness of TCRs and the evenness of their distribution have been proposed in the literature; however, there is no consensus on gold-standard measures and interpretation of each index is complex. Our goal was to examine the performance characteristics of 12 commonly used diversity indices in simulated and real-world data.

RESULTS

Simulated data were generated to evaluate how data richness and evenness affect index values using three nonparametric models. Fourteen real-world TCR datasets were obtained to examine differences in indices by analysis protocols and test their robustness to subsampling. Pielou, Basharin, d50, and Gini primarily describe evenness and highly correlate with one another. They are best suited for measuring the representation of TCR clones. Richness is best captured by S index, next Chao1 and ACE which also consider information on evenness. Shannon, Inv.Simspon, D3, D4, and Gini.Simpson measure richness and increasingly more information on evenness. More skewed TCR distributions provided more stable results in subsampling. Gini-Simpson, Pielou, and Basharin were the most robust in both simulated and experimental data.

CONCLUSIONS

Our results could guide investigators to select the best diversity index for their particular experimental question and draw attention to factors that can influence the accuracy and reproducibility of results.

摘要

背景

T细胞在适应性免疫中发挥着关键作用,因为它们通过其特异性受体(TCR)监测内部和外部免疫原性信号。使用高通量测序,可以在各种临床环境中评估TCR库,并通过计算多样性指数对其进行定量描述。文献中已经提出了多种捕捉TCR丰富度及其分布均匀性的多样性指数;然而,对于金标准测量方法尚无共识,并且每个指数的解释都很复杂。我们的目标是在模拟数据和真实世界数据中检验12种常用多样性指数的性能特征。

结果

使用三种非参数模型生成模拟数据,以评估数据丰富度和均匀性如何影响指数值。获得了14个真实世界的TCR数据集,以通过分析方案检查指数差异,并测试它们对二次抽样的稳健性。皮洛指数、巴沙林指数、d50指数和基尼指数主要描述均匀性,并且彼此高度相关。它们最适合用于测量TCR克隆的代表性。S指数最能捕捉丰富度,其次是Chao1指数和ACE指数,这两个指数也考虑了均匀性信息。香农指数、逆辛普森指数、D3指数、D4指数和基尼-辛普森指数测量丰富度以及越来越多的均匀性信息。TCR分布越偏斜,在二次抽样中提供的结果越稳定。基尼-辛普森指数、皮洛指数和巴沙林指数在模拟数据和实验数据中都是最稳健的。

结论

我们的结果可以指导研究人员为其特定的实验问题选择最佳的多样性指数,并提请注意可能影响结果准确性和可重复性的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f0f/12080070/539b8901bba1/12915_2025_2236_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验