Suppr超能文献

利用双通道图和超图卷积网络发现疾病特征背后的微生物。

Utilizing Dual-Channel Graph and Hypergraph Convolution Network to Discover Microbes Underlying Disease Traits.

作者信息

Chen Jing, Zhang Leyang, Liang Zhipan

机构信息

The School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.

The Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 210000, China.

出版信息

J Chem Inf Model. 2025 May 26;65(10):5152-5162. doi: 10.1021/acs.jcim.5c00224. Epub 2025 May 15.

Abstract

Discovering microbes underlying disease traits opens up opportunities for the diagnosis and effective treatment of diseases. However, traditional methods are often based on biological experiments, which are not only time-consuming but also costly, driving the need for computational frameworks that can accelerate the discovery of these associations. Motivated by these challenges, we propose an innovative prediction algorithm named dual-channel graph and Hypergraph Convolutional Network (DCGHCN) to discover microbes underlying disease traits. First, based on the K-Nearest Neighbors (KNN) principle, we constructed attribute graphs for microbes and diseases, respectively. Next, Graph Convolutional Networks (GCNs) are used to capture homogeneous level implicit representations from attribute graphs of microbes and diseases. We used the output of the GCN layer as input to construct a hypergraph convolutional layer of microbes and diseases, to evaluate the impact of the confirmed microbes and diseases associations (MDAs) on the prediction results. Perform scalar product calculation on the microbe and disease features to determine the predicted score. The innovation of DCGHCN lies in employing the KNN algorithm to handle missing values in the correlation matrix during preprocessing and the use of a dual-channel structure to combine the advantages of GCNs and Hypergraph Convolutional Networks (HGCNs). We used 5-fold cross-validation (CV) to evaluate the performance of DCGHCN. The results showed that the DCGHCN model achieved AUC (Area Under the ROC Curve), AUPR (Area Under the PR Curve), F1-score and accuracy of 0.9415, 0.7637, 0.7515, and 0.9818. We selected two diseases for case studies, and a large number of published literature conclusions confirmed the prediction results of DCGHCN, thus proving that DCGHCN is an effective tool for discovering microbes underlying disease traits.

摘要

发现疾病特征背后的微生物为疾病的诊断和有效治疗带来了机遇。然而,传统方法通常基于生物学实验,这不仅耗时而且成本高昂,从而催生了对能够加速这些关联发现的计算框架的需求。受这些挑战的驱动,我们提出了一种名为双通道图与超图卷积网络(DCGHCN)的创新预测算法,以发现疾病特征背后的微生物。首先,基于K近邻(KNN)原理,我们分别构建了微生物和疾病的属性图。接下来,使用图卷积网络(GCN)从微生物和疾病的属性图中捕获同构层次的隐式表示。我们将GCN层的输出作为输入,构建微生物和疾病的超图卷积层,以评估已确认的微生物与疾病关联(MDA)对预测结果的影响。对微生物和疾病特征进行标量积计算以确定预测分数。DCGHCN的创新之处在于在预处理过程中采用KNN算法处理相关矩阵中的缺失值,并使用双通道结构结合GCN和超图卷积网络(HGCN)的优势。我们使用五折交叉验证(CV)来评估DCGHCN的性能。结果表明,DCGHCN模型的AUC(ROC曲线下面积)、AUPR(PR曲线下面积)、F1分数和准确率分别达到0.9415、0.7637、0.7515和0.9818。我们选择了两种疾病进行案例研究,大量已发表文献的结论证实了DCGHCN的预测结果,从而证明DCGHCN是发现疾病特征背后微生物的有效工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验