通过综合生物信息学分析和机器学习鉴定用于诊断伴有缺血性卒中的动脉粥样硬化的免疫相关枢纽基因。
Identification immune-related hub genes in diagnosing atherosclerosis with ischemic stroke through comprehensive bioinformatics analysis and machine learning.
作者信息
Zhang Ming, Tang Li-Jun, Long Shi-Yu
机构信息
Yilong County People's Hospital of Nanchong, Nanchong, China.
Department of Neurology, Gaoping District People's Hospital of Nanchong, Nanchong, China.
出版信息
Front Neurol. 2025 Apr 30;16:1507855. doi: 10.3389/fneur.2025.1507855. eCollection 2025.
BACKGROUND
Atheroma plaques are major etiological factors in the pathogenesis of ischemic stroke (IS). Emerging evidence highlights the critical involvement of the immune microenvironment and dysregulated inflammatory responses throughout IS progression. Consequently, therapeutic strategies targeting specific immune-related markers or signaling pathways within this microenvironment hold significant promise for IS management.
METHODS
We integrated Weighted Gene Co-expression Network Analysis (WGCNA), CIBERSORT, and machine learning (LASSO/Random Forest) to identify disease-associated modules and hub genes. Immune infiltration analysis evaluated hub gene-immune cell correlations, while protein-protein interaction (PPI) and ROC curve analyses assessed diagnostic performance.
RESULTS
Comprehensive bioinformatics analysis identified three hub genes-OAS2, TMEM106A, and ABCB1-with high prognostic value for ischemic stroke. Immune infiltration profiling revealed significant correlations between these genes and distinct immune cell populations, underscoring their roles in modulating the immune microenvironment. The diagnostic performance of the gene panel was robust, achieving an area under the curve (AUC) was calculated as 0.9404 ( < 0.0001; 95% CI: 0.887-0.9939) for atherosclerotic plaques, demonstrating superior accuracy compared to conventional biomarkers.
CONCLUSION
By integrating machine learning with multi-omics bioinformatics, we established a novel three-gene signature (OAS2, TMEM106A, ABCB1) for precise diagnosis of atherosclerosis and ischemic stroke. These genes exhibit dual diagnostic utility and may influence disease progression through immune cell modulation. Our findings provide a foundation for developing targeted therapies and biomarker-driven clinical tools.
背景
动脉粥样硬化斑块是缺血性卒中(IS)发病机制中的主要病因。新出现的证据强调了免疫微环境和整个IS进展过程中炎症反应失调的关键作用。因此,针对该微环境中特定免疫相关标志物或信号通路的治疗策略在IS管理方面具有重大前景。
方法
我们整合了加权基因共表达网络分析(WGCNA)、CIBERSORT和机器学习(LASSO/随机森林)来识别疾病相关模块和枢纽基因。免疫浸润分析评估枢纽基因与免疫细胞的相关性,而蛋白质-蛋白质相互作用(PPI)和ROC曲线分析评估诊断性能。
结果
综合生物信息学分析确定了三个对缺血性卒中有高预后价值的枢纽基因——OAS2、TMEM106A和ABCB1。免疫浸润分析显示这些基因与不同免疫细胞群体之间存在显著相关性,突出了它们在调节免疫微环境中的作用。基因组合的诊断性能强劲,动脉粥样硬化斑块的曲线下面积(AUC)计算为0.9404(<0.0001;95%CI:0.887 - 0.9939),与传统生物标志物相比显示出更高的准确性。
结论
通过将机器学习与多组学生物信息学相结合,我们建立了一种用于精确诊断动脉粥样硬化和缺血性卒中的新型三基因特征(OAS2、TMEM106A、ABCB1)。这些基因具有双重诊断效用,并可能通过调节免疫细胞影响疾病进展。我们的研究结果为开发靶向治疗和生物标志物驱动的临床工具提供了基础。