文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米技术驱动的术后癌症治疗策略:药物递送系统的创新

Nanotechnology-driven strategies in postoperative cancer treatment: innovations in drug delivery systems.

作者信息

Zhou Jun-Jie, Feng Yan-Chuan, Zhao Min-Long, Guo Qi, Zhao Xi-Bo

机构信息

The Stomatological Hospital, Anyang Sixth People's Hospital, Anyang, China.

出版信息

Front Pharmacol. 2025 Apr 30;16:1586948. doi: 10.3389/fphar.2025.1586948. eCollection 2025.


DOI:10.3389/fphar.2025.1586948
PMID:40371327
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12075547/
Abstract

Cancer remains a global health challenge, and this challenge comes with a significant burden. Current treatment modalities, such as surgery, chemotherapy, and radiotherapy, have their limitations. The emergence of nanomedicines presents a new frontier in postoperative cancer treatment, offering potential to inhibit tumor recurrence and manage postoperative complications. This review deeply explores the application and potential of nanomedicines in the treatment of cancer after surgery. In particular, it focuses on local drug delivery systems (LDDS), which consist of injection, implantation, and spraying. LDDS can provide targeted drug delivery and controlled release, which enhancing therapeutic efficacy. At the same time, it minimizes damage to healthy tissues and reduces systemic side effects. The nanostructures of these systems are unique. They facilitate the sustained release of drugs, prolong the effects of treatment, and decrease the frequency of dosing. This is especially beneficial in the postoperative period. Despite their potential, nanomedicines have limitations. These include high production costs, concerns regarding long-term toxicity, and complex regulatory approval processes. This paper aims to analyze several aspects. These include the advantages of nanomedicines, their drug delivery systems, how they combine with multiple treatment methods, and the associated challenges. Future research should focus on certain issues. These issues are stability, tumor specificity, and clinical translation. By addressing these, the delivery methods can be optimized and their therapeutic efficacy enhanced. With the advancements in materials science and biomedical engineering, the future design of LDDS is set to become more intelligent and personalized. It will cater to the diverse needs of clinical treatment and offer hope for better outcomes in cancer patients after surgery.

摘要

癌症仍然是一项全球性的健康挑战,且这一挑战伴随着巨大的负担。当前的治疗方式,如手术、化疗和放疗,都有其局限性。纳米药物的出现为术后癌症治疗开辟了新的领域,具有抑制肿瘤复发和处理术后并发症的潜力。本综述深入探讨了纳米药物在术后癌症治疗中的应用及潜力。特别关注了局部给药系统(LDDS),其包括注射、植入和喷洒。LDDS能够实现靶向给药和控释,从而提高治疗效果。同时,它将对健康组织的损伤降至最低,并减少全身副作用。这些系统的纳米结构独特。它们有助于药物的持续释放,延长治疗效果,并减少给药频率。这在术后阶段尤为有益。尽管纳米药物具有潜力,但也存在局限性。这些局限性包括生产成本高、对长期毒性的担忧以及复杂的监管审批流程。本文旨在分析几个方面。这些方面包括纳米药物的优势、其给药系统、它们如何与多种治疗方法相结合以及相关挑战。未来的研究应聚焦于某些问题。这些问题是稳定性、肿瘤特异性和临床转化。通过解决这些问题,可以优化给药方式并提高其治疗效果。随着材料科学和生物医学工程的进步,LDDS的未来设计将变得更加智能和个性化。它将满足临床治疗的多样化需求,并为术后癌症患者带来更好预后的希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/55f9424ed314/fphar-16-1586948-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/7bd7eeab7303/fphar-16-1586948-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/63c98376cd59/fphar-16-1586948-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/8c448b4096e0/fphar-16-1586948-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/b8b04539ee37/fphar-16-1586948-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/113b9d483161/fphar-16-1586948-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/ce25a03339ea/fphar-16-1586948-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/7c1521ec6b47/fphar-16-1586948-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/bace8a4621e7/fphar-16-1586948-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/9b4e3e50e9b7/fphar-16-1586948-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/469ed9ebf827/fphar-16-1586948-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/2b017d047d9f/fphar-16-1586948-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/aff2791b9e76/fphar-16-1586948-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/55f9424ed314/fphar-16-1586948-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/7bd7eeab7303/fphar-16-1586948-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/63c98376cd59/fphar-16-1586948-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/8c448b4096e0/fphar-16-1586948-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/b8b04539ee37/fphar-16-1586948-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/113b9d483161/fphar-16-1586948-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/ce25a03339ea/fphar-16-1586948-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/7c1521ec6b47/fphar-16-1586948-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/bace8a4621e7/fphar-16-1586948-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/9b4e3e50e9b7/fphar-16-1586948-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/469ed9ebf827/fphar-16-1586948-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/2b017d047d9f/fphar-16-1586948-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/aff2791b9e76/fphar-16-1586948-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8fc/12075547/55f9424ed314/fphar-16-1586948-g013.jpg

相似文献

[1]
Nanotechnology-driven strategies in postoperative cancer treatment: innovations in drug delivery systems.

Front Pharmacol. 2025-4-30

[2]
Nanosize drug delivery system.

Curr Pharm Biotechnol. 2013

[3]
Recent advances in the bench-to-bedside translation of cancer nanomedicines.

Acta Pharm Sin B. 2025-1

[4]
Advancing gastric cancer treatment: nanotechnology innovations and future prospects.

Cell Biol Toxicol. 2024-11-20

[5]
Advancements in Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Breast Cancer Therapy.

Curr Pharm Des. 2024

[6]
Diabetology and Nanotechnology: A Compelling Combination.

Recent Pat Nanotechnol. 2025

[7]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[8]
Nanomaterials in the diagnosis and treatment of gastrointestinal tumors: New clinical choices and treatment strategies.

Mater Today Bio. 2025-4-19

[9]
Nanotechnology-based Approaches for Targeted Drug Delivery to the Small Intestine: Advancements and Challenges.

Curr Pharm Des. 2025-2-10

[10]
Advancements in nanotechnology for targeted drug delivery in idiopathic pulmonary fibrosis: a focus on solid lipid nanoparticles and nanostructured lipid carriers.

Drug Dev Ind Pharm. 2025-4

本文引用的文献

[1]
Effect and underlying mechanism of a photochemotherapy dual-function nanodrug delivery system for head and neck squamous cell carcinoma.

J Transl Med. 2024-11-19

[2]
Progressive plasticity during colorectal cancer metastasis.

Nature. 2025-1

[3]
Photodynamic Therapy for Oral Squamous Cell Carcinoma: Current Status, Challenges, and Prospects.

Int J Nanomedicine. 2024

[4]
Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy.

Signal Transduct Target Ther. 2024-10-7

[5]
INTASYL self-delivering RNAi decreases TIGIT expression, enhancing NK cell cytotoxicity: a potential application to increase the efficacy of NK adoptive cell therapy against cancer.

Cancer Immunol Immunother. 2024-10-3

[6]
Macrophages and T cells in metabolic disorder-associated cancers.

Nat Rev Cancer. 2024-11

[7]
Repurposing metabolic regulators: antidiabetic drugs as anticancer agents.

Mol Biomed. 2024-9-28

[8]
Calcium Peroxide-Based Hydrogels Enable Biphasic Release of Hydrogen Peroxide for Infected Wound Healing.

Adv Sci (Weinh). 2024-10

[9]
Tumour mutational burden: clinical utility, challenges and emerging improvements.

Nat Rev Clin Oncol. 2024-10

[10]
Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy.

Acta Pharmacol Sin. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索