Malan Nitesh Singh, Gopalakrishnan Raghavan, Cunningham David, Hogue Olivia, Baker Kenneth B, Machado Andre G
Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, USA.
Center for Rehabilitation Research, MetroHealth Systems, Cleveland, Ohio, USA.
Hum Brain Mapp. 2025 Jun 1;46(8):e70227. doi: 10.1002/hbm.70227.
The cerebellum acts as a forward internal model to predict motor outcomes, compare them with sensory feedback, and generate prediction errors that refine prediction accuracy. Our physiological understanding of cerebellar function during motor control derives predominantly from animal experiments and clinical observations in patients with disorders of the cerebellum or its connections with the cerebrum and spinal cord. Here, we report a human electrophysiology-based investigation of cerebello-thalamo-cortical pathway activity during motor error detection and correction. Participants performed a computerized motor oddball task while synchronized electrophysiological recordings were collected from cerebellar dentate (DN) using depth electrodes and scalp electroencephalography (EEG). The task involved moving a 2-D ball on a screen toward a predetermined target at 40% (standard trials) or 20% (oddball trials) of their maximum voluntary contraction. Six participants completed an average of 239 trials, with oddball trials randomly occurring with a 30% frequency. At the cortex, oddball trials exhibited significantly greater centro-parietal error positivity and fronto-centro-parietal desynchronization during error correction, predominantly in the alpha and low beta frequency bands. DN examination also revealed greater alpha and low beta desynchronization during error correction. Lastly, oddball trials showed significantly greater cortico-cerebellar coherence during error correction in the same frequency bands with bidirectional interaction between the cortex and DN. These findings expand on the cortico-cerebello-cortical physiology of human motor control and provide cues for designing interventions aimed at alleviating the functional burdens of acquired injuries of the central nervous system.
小脑作为一个前向内部模型,用于预测运动结果,将其与感觉反馈进行比较,并产生预测误差以提高预测准确性。我们对运动控制过程中小脑功能的生理学理解主要来自动物实验以及对患有小脑疾病或小脑与大脑和脊髓连接障碍患者的临床观察。在此,我们报告了一项基于人类电生理学的研究,该研究针对运动误差检测和校正过程中小脑 - 丘脑 - 皮质通路的活动。参与者执行一项计算机化的运动Oddball任务,同时使用深度电极从小脑齿状核(DN)和头皮脑电图(EEG)同步收集电生理记录。该任务要求在屏幕上以最大自主收缩的40%(标准试验)或20%(Oddball试验)将二维球移向预定目标。六名参与者平均完成了239次试验,Oddball试验以30%的频率随机出现。在皮质,Oddball试验在误差校正期间表现出明显更大的中央 - 顶叶误差阳性和额中央 - 顶叶去同步化,主要出现在α和低β频段。对DN的检查还显示在误差校正期间有更大的α和低β去同步化。最后,Oddball试验在相同频段的误差校正期间显示出明显更大的皮质 - 小脑相干性,且皮质与DN之间存在双向相互作用。这些发现扩展了人类运动控制的皮质 - 小脑 - 皮质生理学,并为设计旨在减轻中枢神经系统后天损伤功能负担的干预措施提供了线索。