Zhang Zeyu, Huang He, Zhao Yanzhe, Wang Liming, Liu Chuang, Zhou Shiming, Wu Yanfei, Zhao Jiapeng, Qiao Guanxiong, Zhang Jingyan, Zheng Xinqi, Wang Shouguo
School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
ACS Nano. 2025 May 27;19(20):18976-18985. doi: 10.1021/acsnano.4c15950. Epub 2025 May 15.
Multiferroic materials, including tunable ferrovalley characteristics and band topology, enabled by ferroelectric control at the nanoscale, possess significant potential for technology advances in next-generation magnetoelectric and spintronic applications. However, the realization of this fascinating multifunctionality in nanoscale systems with perpendicular magnetic anisotropy remains unexplored. Here, we propose a class of van der Waals multiferroic heterostructures comprising ferromagnetic, ferrovalley, and ferroelectric layers that exhibit switchable topological states in response to ferroelectric polarization. Taking the InSe/RuClBr/CrI heterostructure as an example, our first-principles calculations reveal its perpendicular magnetic anisotropy and band topology transition under different ferroelectric polarizations. When the ferroelectric polarization is downward, the heterostructure exhibits a type-III band alignment with metallic properties. Remarkably, when the polarization direction is reversed upward, it demonstrates a type-I band alignment accompanied by the emergence of a quantum anomalous Hall effect. Consequently, by manipulating the ferroelectric polarization direction, the multiferroic heterostructure can switch between normal metal behavior and a nonvolatile topological insulator. This study not only proposes a viable approach for tailoring topological states through multiferroic heterostructures but also demonstrates its potential significance in advancing multifunctional spintronic applications in ferroelectronics, valleytronics, and topology.
通过纳米尺度的铁电控制实现的包括可调谐铁谷特性和能带拓扑的多铁性材料,在下一代磁电和自旋电子学应用的技术进步方面具有巨大潜力。然而,在具有垂直磁各向异性的纳米尺度系统中实现这种引人入胜的多功能性仍未得到探索。在此,我们提出一类由铁磁、铁谷和铁电层组成的范德华多铁性异质结构,它们在铁电极化作用下呈现可切换的拓扑态。以InSe/RuClBr/CrI异质结构为例,我们的第一性原理计算揭示了其在不同铁电极化下的垂直磁各向异性和能带拓扑转变。当铁电极化向下时,异质结构呈现出具有金属特性的III型能带排列。值得注意的是,当极化方向向上反转时,它表现出I型能带排列并伴随着量子反常霍尔效应的出现。因此,通过操纵铁电极化方向,多铁性异质结构可以在正常金属行为和非易失性拓扑绝缘体之间切换。这项研究不仅提出了一种通过多铁性异质结构定制拓扑态的可行方法,还展示了其在推进铁电、谷电子学和拓扑学中多功能自旋电子学应用方面的潜在意义。