Suppr超能文献

个性化压力反应指数以量化神经重症监护中的脑自动调节功能

Personalizing the Pressure Reactivity Index for Quantifying Cerebral Autoregulation in Neurocritical Care.

作者信息

Briggs Jennifer K, Stroh J N, Foreman Brandon, Park Soojin, Bennett Tellen D, Albers David J

出版信息

IEEE Trans Biomed Eng. 2025 May 15;PP. doi: 10.1109/TBME.2025.3570249.

Abstract

OBJECTIVE

The Pressure Reactivity Index (PRx) is a common metric for assessing cerebral autoregulation in neurocritical care. This study aimed to enhance the clinical utility of PRx by developing a personalized PRx algorithm (pPRx) and identifying ideal hyperparameters.

METHODS

Algorithmic errors were quantified using simulated data and multimodal monitoring data from traumatic brain injury patients from the Track-TBI dataset. Using linear regression, heart rate was identified as a potential cause of PRx error. The pPRx method was developed by reparameterizing PRx averaging to heartbeats. Ideal hyperparameters for the standard PRx algorithm were identified that minimized algorithmic errors.

RESULTS

PRx was sensitive to hyperparameters and patient variability. Errors were related to patient heart rates. By parameterizing PRx to heartbeats, the pPRx methodology significantly reduced noise and sensitivity to both patient variability and hyperparameter selection. In the standard PRx algorithm, averaging windows of 10 seconds and correlation windows of 40 samples resulted in the lowest overall error.

CONCLUSION

Personalized PRx enhances the robustness and accuracy of cerebral autoregulation estimation by addressing patient- and hyperparameter-sensitivity. This improvement is crucial for reliable clinical decision-making in neurocritical care.

SIGNIFICANCE

Robust estimation of cerebral autoregulation would be beneficial for identifying precision medicine targets and improving outcomes for neurocritical care patients. We systematically increased the robustness of PRx to make it more consistent across patient populations.

摘要

目的

压力反应性指数(PRx)是评估神经重症监护中脑自动调节功能的常用指标。本研究旨在通过开发个性化PRx算法(pPRx)并确定理想的超参数,提高PRx的临床实用性。

方法

使用来自Track-TBI数据集的创伤性脑损伤患者的模拟数据和多模态监测数据对算法误差进行量化。通过线性回归,确定心率是PRx误差的一个潜在原因。通过将PRx平均重新参数化为心跳次数来开发pPRx方法。确定了标准PRx算法的理想超参数,以尽量减少算法误差。

结果

PRx对超参数和患者变异性敏感。误差与患者心率有关。通过将PRx参数化为心跳次数,pPRx方法显著降低了噪声以及对患者变异性和超参数选择的敏感性。在标准PRx算法中,10秒的平均窗口和40个样本的相关窗口导致总体误差最低。

结论

个性化PRx通过解决患者和超参数敏感性问题,提高了脑自动调节估计的稳健性和准确性。这一改进对于神经重症监护中可靠的临床决策至关重要。

意义

稳健的脑自动调节估计对于确定精准医学靶点和改善神经重症监护患者的预后将是有益的。我们系统地提高了PRx的稳健性,使其在不同患者群体中更加一致。

相似文献

1
2
4
Cerebral perfusion pressure targets after traumatic brain injury: a reappraisal.
Crit Care. 2025 May 21;29(1):207. doi: 10.1186/s13054-025-05458-9.
5
The Pressure Reactivity Index as a Measure for Cerebrovascular Autoregulation: Validation in a Porcine Cranial Window Model.
Neurosurgery. 2024 Dec 1;95(6):1450-1456. doi: 10.1227/neu.0000000000003019. Epub 2024 Jun 11.

本文引用的文献

1
Exploration of uncertainty of PRx time trends.
Brain Spine. 2024 Mar 31;4:102795. doi: 10.1016/j.bas.2024.102795. eCollection 2024.
4
Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association.
Circulation. 2023 Feb 21;147(8):e93-e621. doi: 10.1161/CIR.0000000000001123. Epub 2023 Jan 25.
5
Effect of artifacts upon the pressure reactivity index.
Sci Rep. 2022 Sep 6;12(1):15131. doi: 10.1038/s41598-022-19101-y.
7
Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation.
Physiol Rev. 2021 Oct 1;101(4):1487-1559. doi: 10.1152/physrev.00022.2020. Epub 2021 Mar 26.
8
Anti-decubitus bed mattress may interfere with cerebrovascular pressure reactivity measures due to induced ICP and ABP cyclic peaks.
J Clin Monit Comput. 2021 Apr;35(2):423-425. doi: 10.1007/s10877-020-00471-5. Epub 2020 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验