Hu Wenting, Libérioux Valérian, Rossignol Julien, Pembouong Gaëlle, Derat Etienne, Ménand Mickaël, Bouteiller Laurent, Sollogoub Matthieu
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Paris, F-75005, France.
Institut Universitaire de France (IUF), France.
Angew Chem Int Ed Engl. 2025 Jul;64(29):e202507069. doi: 10.1002/anie.202507069. Epub 2025 May 27.
Linking a cyclodextrin (CD) host to a hydrophobic guest can result in two distinct conformations: an introverted form (in), in which the guest is self-included within the CD cavity, and an extraverted form (out), which enables intermolecular interactions and thus the formation of a supramolecular polymer. In this study, we demonstrate that a subtle variation of the linker enables interconversion between these two conformations, the in conformer being thermodynamically the most stable in water. At basic pH (>8) the out conformer is instantly converted into the in. In contrast, at acidic pH (<2), the out monomer can be kinetically trapped and can self-assemble into a supramolecular polymer. DFT calculations reveal that the interconversion mechanism is governed by a key hydrogen bond that locks the conformational states. Furthermore, we show that pH provides fine kinetic control over the interconversion rate and, consequently, the polymerization process. The system can then be reset toward the out conformation by using DMSO. This system stands in contrast to known transient supramolecular polymerization processes, which rely on metastable (non-assembled) monomers. Here, it is the kinetic trapping of the assembling monomer that allows control over the lifetime of the transient supramolecular polymer via a pH-responsive mechanism.
将环糊精(CD)主体与疏水性客体相连可产生两种不同的构象:内向型(in),其中客体自身包含在CD腔内;外向型(out),其能够进行分子间相互作用并因此形成超分子聚合物。在本研究中,我们证明连接基团的细微变化能够使这两种构象相互转化,其中in构象异构体在水中热力学上最稳定。在碱性pH(>8)时,out构象异构体立即转化为in构象。相反,在酸性pH(<2)时,out单体可以被动力学捕获并能自组装成超分子聚合物。密度泛函理论计算表明,相互转化机制受锁定构象状态的关键氢键控制。此外,我们表明pH对相互转化速率进而对聚合过程提供了精细的动力学控制。然后可以通过使用二甲基亚砜将体系重置为out构象。该体系与已知的依赖亚稳态(未组装)单体的瞬态超分子聚合过程形成对比。在此,正是组装单体的动力学捕获使得能够通过pH响应机制控制瞬态超分子聚合物的寿命。