Tsuppayakorn-Aek Prutthipong, Bovornratanaraks Thiti, Kotmool Komsilp
Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
School of Integrated Innovative Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
Sci Rep. 2025 May 16;15(1):16986. doi: 10.1038/s41598-025-98376-3.
Investigating novel materials under high pressure presents a challenge in condensed matter physics. In this study, we examine [Formula: see text] and [Formula: see text], materials identified through an evolutionary algorithm, which exhibit thermodynamic stability up to at least 100 GPa. Our findings reveal that [Formula: see text] exhibits a rhombohedral structure ([Formula: see text]) at pressures ranging from 0 GPa to 25 GPa, transitioning to a hexagonal structure ([Formula: see text]) between 50 GPa and 100 GPa. In contrast, [Formula: see text] is predicted to have a monoclinic structure (C2/m) at low pressures and a hexagonal structure ([Formula: see text]) at higher pressures. Notably, both materials are dynamically stable within the harmonic approximation at pressures beyond 15 GPa for [Formula: see text] and beyond 25 GPa for [Formula: see text]. Furthermore, accurately capturing the thermal lattice vibrations of these materials under strong quantum anharmonicity requires advanced methods. Using a stochastic approach to self-consistent harmonic approximation (SSCHA), we introduce anharmonic corrections to further explore lattice dynamics. For superconducting properties, [Formula: see text] shows a remarkable critical temperature ([Formula: see text]) of 44.5 K at a pressure of 25 GPa, as predicted within the harmonic approximation. In comparison, [Formula: see text] achieves a [Formula: see text] of approximately 13 K at a pressure of 50 GPa when anharmonic corrections are applied using the Allen-Dynes modified McMillan equation. Our findings bridge a gap in understanding electronic band structure, phonon linewidth impacts, and vibrational modes under pressure, offering key insights into phase stability and superconducting mechanisms. These findings introduce a promising new class of materials, emphasizing their potential to enrich superconductivity research by advancing previously overlooked substances.
在高压下研究新型材料是凝聚态物理中的一项挑战。在本研究中,我们考察了通过进化算法识别出的材料[化学式:见正文]和[化学式:见正文],它们在至少100吉帕的压力下表现出热力学稳定性。我们的研究结果表明,[化学式:见正文]在0吉帕至25吉帕的压力范围内呈现菱面体结构([化学式:见正文]),在50吉帕至100吉帕之间转变为六方结构([化学式:见正文])。相比之下,[化学式:见正文]预计在低压下具有单斜结构(C2/m),在高压下具有六方结构([化学式:见正文])。值得注意的是,对于[化学式:见正文]在超过15吉帕的压力以及对于[化学式:见正文]在超过25吉帕的压力下,这两种材料在简谐近似下都是动态稳定的。此外,要在强量子非简谐性下准确捕捉这些材料的热晶格振动需要先进的方法。我们使用随机自洽简谐近似(SSCHA)方法引入非简谐修正来进一步探索晶格动力学。对于超导性质,如在简谐近似下所预测的,[化学式:见正文]在25吉帕的压力下显示出44.5 K的显著临界温度([化学式:见正文])。相比之下,当使用艾伦 - 戴恩斯修正的麦克米兰方程应用非简谐修正时,[化学式:见正文]在50吉帕的压力下实现了约13 K的[化学式:见正文]。我们的研究结果填补了在理解电子能带结构、声子线宽影响以及压力下的振动模式方面的空白,为相稳定性和超导机制提供了关键见解。这些发现引入了一类有前景的新型材料,强调了它们通过推进先前被忽视的物质来丰富超导研究的潜力。