Adler Stephen S, Sato Noriko, Baidoo Kwamena E, Lin Frank I, Lee Woonghee, Olkowski Colleen P, Escorcia Freddy E, Choyke Peter L
Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, USA.
Commun Eng. 2025 May 15;4(1):89. doi: 10.1038/s44172-025-00426-1.
Autoradiography is used to study the distribution and binding of radioisotope tagged ligands in tissue at microscale among other applications. The technology has evolved since its inception when it used analogue film exposure techniques with the introduction of digital imaging systems sensitive to ionizing radiation. We report on the development of our Quantitative Particle Identification spectral autoradiography system (QPID), which is based on the Timepix3 sensor and a gamma detecting scintillation crystal. This autoradiography system leverages the ionizing radiation detection features of the Timepix3 to measure the energy deposition from charged particles from radioisotopes with a time resolution of 7.7 ns full width at half max (FWHM), generating spectral or activity autoradiography images. The QPID includes a scintillation crystal used to record gamma emissions coincident with the Timepix3 ionization events with a time resolution of 24.2 ns FWHM. The QPID can separate tracks between α and ß particles, select specific ranges of deposited energies or select on the presence of coincident gamma emissions within a selected energy range when generating images. The QPID has a 10% linearity response up to 700 Bq for 223Ra and 2.5 kBq for 18 F radioisotopes. Using α and ß+ particle identification filters, separate images of RaCl and NaF activity distributions were generated from a bone sample infused with the two radioligands together. This unique capability can open the door to the study of targeted radiotherapies which use theranostic α and ß+ imaging agents by measuring their relative pharmacokinetic properties.
放射自显影术用于在微观尺度上研究放射性同位素标记配体在组织中的分布和结合等应用。自其诞生以来,随着对电离辐射敏感的数字成像系统的引入,该技术已从使用模拟胶片曝光技术发展而来。我们报告了我们的定量粒子识别光谱放射自显影系统(QPID)的开发情况,该系统基于Timepix3传感器和一个伽马探测闪烁晶体。这个放射自显影系统利用Timepix3的电离辐射检测功能,以7.7纳秒半高全宽(FWHM)的时间分辨率测量来自放射性同位素的带电粒子的能量沉积,生成光谱或活性放射自显影图像。QPID包括一个闪烁晶体,用于记录与Timepix3电离事件同时发生的伽马发射,时间分辨率为24.2纳秒FWHM。在生成图像时,QPID可以区分α和β粒子的轨迹,选择特定的能量沉积范围,或选择在选定能量范围内是否存在同时发生的伽马发射。对于223Ra,QPID在高达700贝克勒尔时有10%的线性响应,对于18F放射性同位素则为2.5千贝克勒尔。使用α和β+粒子识别滤波器,从一起注入两种放射性配体的骨样本中生成了RaCl和NaF活性分布的单独图像。这种独特的能力可以为靶向放射治疗的研究打开大门,通过测量治疗诊断用α和β+成像剂的相对药代动力学特性来进行研究。
Commun Eng. 2025-5-15
Phys Med Biol. 2000-7
Nucl Instrum Methods Phys Res A. 2014-12-11
Cancer Biother Radiopharm. 2020-9
J Environ Radioact. 2019-2
Cancer Biother Radiopharm. 2021-3
Phys Med Biol. 2018-9-10
Nucl Instrum Methods Phys Res A. 2014-12-11
Nat Methods. 2012-6-28
Nat Rev Cancer. 2011-4