Miller Brian W, Gregory Stephanie J, Fuller Erin S, Barrett Harrison H, Barber H Bradford, Furenlid Lars R
Pacific Northwest National Laboratory, Richland, WA 99352, USA ; College of Optical Sciences, The University of Arizona, Tucson, AZ 85719, USA.
Pacific Northwest National Laboratory, Richland, WA 99352, USA.
Nucl Instrum Methods Phys Res A. 2014 Dec 11;767:146-152. doi: 10.1016/j.nima.2014.05.070.
We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.
我们已经研发并测试了一种新型的电离辐射量子成像探测器(iQID)。这种基于闪烁的探测器最初是作为一种高分辨率伽马射线成像仪开发的,称为巴祖卡单光子发射计算机断层扫描(BazookaSPECT),用于单光子发射计算机断层扫描(SPECT)。最近,我们研究了该探测器对其他形式电离辐射的响应和成像潜力,包括阿尔法粒子、中子、贝塔粒子和裂变碎片粒子。对如此广泛的电离辐射的确认响应促使了它的新名称。iQID相机的主要操作包括将闪烁体与图像增强器耦合。粒子相互作用产生的闪烁光由增强器进行光学放大,然后重新成像到CCD/CMOS相机传感器上。增强器提供了足够的光学增益,实际上任何CCD/CMOS相机都可用于对电离辐射进行成像。使用高性能图形处理硬件上的图像分析算法,逐个事件实时估计单个粒子的空间位置和能量。iQID相机的显著特点包括便携性、大面积有源区、对带电粒子出色的探测效率以及高空间分辨率(几十微米)。尽管一般,但iQID具有足以区分粒子的能量分辨率。此外,单个事件的空间特征可用于粒子鉴别。最近开发的一项重要的iQID成像应用是实时单粒子数字放射自显影。我们展示了最新结果并讨论了潜在应用。
Nucl Instrum Methods Phys Res A. 2014-12-11
Proc SPIE Int Soc Opt Eng. 2012-8-12
Proc SPIE Int Soc Opt Eng. 2009
IEEE Nucl Sci Symp Conf Rec (1997). 2009-11-1
Proc SPIE Int Soc Opt Eng. 2014-9-12
Proc SPIE Int Soc Opt Eng. 2007-1-1
Proc SPIE Int Soc Opt Eng. 2014-8-17
Commun Eng. 2025-5-15
Biomed Pharmacother. 2024-1
Proc SPIE Int Soc Opt Eng. 2012-8-12
IEEE Nucl Sci Symp Conf Rec (1997). 2012
Proc SPIE Int Soc Opt Eng. 2007-1-1
IEEE Trans Nucl Sci. 2009-6-1
Nucl Instrum Methods Phys Res A. 2008-6-11
Appl Radiat Isot. 2004
Nucl Instrum Methods Phys Res A. 2002-1-1