Reddy Naveen S, Bakli Chirodeep, Arya Vinay, Ghosh Debasis
Centre for Nano and Material Sciences, JAIN (Deemed to be University), Kanakapura Road, Bangalore, Karnataka, 562112, India.
Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
Chemistry. 2025 Jun 26;31(36):e202501030. doi: 10.1002/chem.202501030. Epub 2025 Jun 5.
We present a high-performance lithium-sulfur (Li-S) battery cathode based on a reduced graphene oxide (rGO)-decorated ZnS nanosphere structure, which serves as a multifunctional sulfur host. The rGO framework provides a high-surface-area conductive network for enhanced sulfur loading, while ZnS acts as an electrocatalyst to accelerate polysulfide conversion. Fabricated via a one-step hydrothermal method, the composite achieves a high sulfur content (∼80%) with efficient polysulfide confinement and catalytic conversion as an Li-S battery cathode. As a result, it delivers an initial capacity of 1014 mAh/g at 0.1 C and retains 592 mAh/g at 1C, demonstrating excellent rate capability and cycling stability (479 mAh/g over 200 cycles at 1C). To further understand the interfacial interactions, molecular dynamics simulations were conducted, revealing the role of ZnS in accelerating lithium polysulfide (LiPS) conversion, particularly from Li₂S₄ to Li₂S. The study analyzed LiPS diffusion coefficients and potential energy across different sulfur species, confirming the superior efficiency of the rGO@ZnS host. These findings highlight the potential of ZnS-decorated rGO structures as a promising approach to improving Li-S battery performance through enhanced sulfur utilization and polysulfide regulation.
我们展示了一种基于还原氧化石墨烯(rGO)修饰的硫化锌(ZnS)纳米球结构的高性能锂硫(Li-S)电池阴极,该结构作为一种多功能硫宿主。rGO框架提供了高表面积的导电网络以增强硫负载,而ZnS作为电催化剂加速多硫化物转化。通过一步水热法制备的该复合材料作为Li-S电池阴极实现了高硫含量(约80%)以及高效的多硫化物限制和催化转化。结果,它在0.1 C下的初始容量为1014 mAh/g,在1 C下保持592 mAh/g,展现出优异的倍率性能和循环稳定性(在1 C下200次循环后为479 mAh/g)。为了进一步理解界面相互作用,进行了分子动力学模拟,揭示了ZnS在加速多硫化锂(LiPS)转化,特别是从Li₂S₄到Li₂S转化中的作用。该研究分析了不同硫物种的LiPS扩散系数和势能,证实了rGO@ZnS宿主的卓越效率。这些发现突出了修饰有ZnS的rGO结构作为一种通过提高硫利用率和调节多硫化物来改善Li-S电池性能的有前景方法的潜力。