Alet Analía Inés, Porini Sabrina, Riquelme Bibiana Doris, Bisio Alessandra, Scifoni Emanuele, Galassi Mariel Elisa
Grupo de Física Biomédica, Instituto de Física Rosario (CONICET-UNR), Rosario, Argentina.
Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (FCByF, UNR), Rosario, Argentina.
Biophys Rev. 2025 Mar 15;17(2):579-590. doi: 10.1007/s12551-025-01302-0. eCollection 2025 Apr.
This review explores the effects of ionizing radiation on blood and its components, focusing on its applications, biological impacts, and implications for medical and occupational settings. Ionizing radiation is a cornerstone of modern medicine, playing a critical role in diagnostic imaging, cancer treatment, and preventive measures, such as the irradiation of blood units to prevent transfusion-associated graft-versus-host disease. However, it also induces significant alterations in blood cells, including genetic damage, immune suppression, and changes in hematological, biochemical, and hemorheological parameters, depending on the dose, dose rate, and type of radiation. Conventional radiotherapy, hadron therapy, and the emerging FLASH modality exhibit distinct effects on blood. Hadron therapy and FLASH radiotherapy could reduce oxidative stress preserving red blood cell deformability more effectively than conventional methods, thereby minimizing systemic toxicity. However, the underlying mechanisms remain a topic of ongoing investigation. Additionally, studies reveal how different types of radiation, including gamma rays, X-rays, electron beams, and hadrons, uniquely influence blood cells, underscoring the complexity of radiobiological interactions. Challenges and controversies, such as the long-term hematological impact of radiation exposure, individual variability in response, and the potential of radioprotective strategies and immune system stimulation are also addressed. Insights into hemorheological changes and the development of personalized approaches are critical for optimizing therapeutic outcomes and safety protocols. By synthesizing current knowledge, this review emphasizes the need for further research on the effects of ionizing radiation on blood to bridge gaps in understanding and enhance clinical and practical applications.
本综述探讨了电离辐射对血液及其成分的影响,重点关注其应用、生物学影响以及对医疗和职业环境的意义。电离辐射是现代医学的基石,在诊断成像、癌症治疗以及预防措施(如对血液单位进行辐照以预防输血相关移植物抗宿主病)中发挥着关键作用。然而,根据辐射剂量、剂量率和类型的不同,它也会引起血细胞的显著变化,包括基因损伤、免疫抑制以及血液学、生化和血液流变学参数的改变。传统放疗、强子治疗和新兴的FLASH放疗模式对血液有不同的影响。与传统方法相比,强子治疗和FLASH放疗可以更有效地减少氧化应激,保持红细胞的变形能力,从而将全身毒性降至最低。然而,其潜在机制仍是一个正在研究的课题。此外,研究还揭示了不同类型的辐射,包括伽马射线、X射线、电子束和强子,如何独特地影响血细胞,凸显了放射生物学相互作用的复杂性。还讨论了诸如辐射暴露的长期血液学影响、个体反应差异以及辐射防护策略和免疫系统刺激的潜力等挑战和争议。深入了解血液流变学变化以及开发个性化方法对于优化治疗效果和安全方案至关重要。通过综合当前知识,本综述强调需要进一步研究电离辐射对血液的影响,以弥合认识上的差距并加强临床和实际应用。