Suppr超能文献

Neurovision:一种基于深度学习的网络应用程序,采用权重感知决策方法进行脑肿瘤检测。

Neurovision: A deep learning driven web application for brain tumour detection using weight-aware decision approach.

作者信息

Santhosh Thota Rishik Sai, Mohanty Sachi Nandan, Pradhan Nihar Ranjan, Khan Tauseef, Derbali Morched

机构信息

School of Computer Science and Engineering (SCOPE), VIT-AP University, Inavolu, Amaravati, Andhra Pradesh, India.

Faculty of Computing and Information Technology (FCIT), King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Digit Health. 2025 May 14;11:20552076251333195. doi: 10.1177/20552076251333195. eCollection 2025 Jan-Dec.

Abstract

In recent times, appropriate diagnosis of brain tumour is a crucial task in medical system. Therefore, identification of a potential brain tumour is challenging owing to the complex behaviour and structure of the human brain. To address this issue, a deep learning-driven framework consisting of four pre-trained models viz DenseNet169, VGG-19, Xception, and EfficientNetV2B2 is developed to classify potential brain tumours from medical resonance images. At first, the deep learning models are trained and fine-tuned on the training dataset, obtained validation scores of trained models are considered as model-wise weights. Then, trained models are subsequently evaluated on the test dataset to generate model-specific predictions. In the weight-aware decision module, the class-bucket of a probable output class is updated with the weights of deep models when their predictions match the class. Finally, the bucket with the highest aggregated value is selected as the final output class for the input image. A novel weight-aware decision mechanism is a key feature of this framework, which effectively deals tie situations in multi-class classification compared to conventional majority-based techniques. The developed framework has obtained promising results of 98.7%, 97.52%, and 94.94% accuracy on three different datasets. The entire framework is seamlessly integrated into an end-to-end web-application for user convenience. The source code, dataset and other particulars are publicly released at https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app [Rishik Sai Santhosh, "Brain Tumour Image Classification Application," https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app] for academic, research and other non-commercial usage.

摘要

近年来,脑肿瘤的准确诊断是医疗系统中的一项关键任务。因此,由于人类大脑复杂的行为和结构,识别潜在的脑肿瘤具有挑战性。为了解决这个问题,开发了一个由四个预训练模型(即DenseNet169、VGG - 19、Xception和EfficientNetV2B2)组成的深度学习驱动框架,用于从医学共振图像中对潜在的脑肿瘤进行分类。首先,在训练数据集上对深度学习模型进行训练和微调,将训练模型获得的验证分数视为模型特定的权重。然后,在测试数据集上对训练后的模型进行评估,以生成模型特定的预测。在权重感知决策模块中,当深度模型的预测与类别匹配时,用深度模型的权重更新可能输出类别的类桶。最后,选择聚合值最高的桶作为输入图像的最终输出类别。一种新颖的权重感知决策机制是该框架的关键特性,与传统的基于多数的技术相比,它能有效地处理多类分类中的平局情况。所开发的框架在三个不同的数据集上分别取得了98.7%、97.52%和94.94%的准确率,结果令人满意。为方便用户,整个框架无缝集成到了一个端到端的网络应用程序中。源代码、数据集和其他详细信息已在https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app [Rishik Sai Santhosh, "Brain Tumour Image Classification Application," https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app]上公开发布,供学术、研究和其他非商业用途使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf0/12078957/77ada7053f80/10.1177_20552076251333195-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验