Suppr超能文献

基于 MRI 图像的脑肿瘤分类性能分析中的深度迁移学习方法。

Deep Transfer Learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images.

机构信息

Department of ISE, Dr. Ambedkar Institute of Technology, Bengaluru 560056, India.

Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 57168, Riyadh 21574, Saudi Arabia.

出版信息

J Healthc Eng. 2022 Mar 8;2022:3264367. doi: 10.1155/2022/3264367. eCollection 2022.

Abstract

Brain tumor classification is a very important and the most prominent step for assessing life-threatening abnormal tissues and providing an efficient treatment in patient recovery. To identify pathological conditions in the brain, there exist various medical imaging technologies. Magnetic Resonance Imaging (MRI) is extensively used in medical imaging due to its excellent image quality and independence from ionizing radiations. The significance of deep learning, a subset of artificial intelligence in the area of medical diagnosis applications, has macadamized the path in rapid developments for brain tumor detection from MRI to higher prediction rate. For brain tumor analysis and classification, the convolution neural network (CNN) is the most extensive and widely used deep learning algorithm. In this work, we present a comparative performance analysis of transfer learning-based CNN-pretrained VGG-16, ResNet-50, and Inception-v3 models for automatic prediction of tumor cells in the brain. Pretrained models are demonstrated on the MRI brain tumor images dataset consisting of 233 images. Our paper aims to locate brain tumors with the utilization of the VGG-16 pretrained CNN model. The performance of our model will be evaluated on accuracy. As an outcome, we can estimate that the pretrained model VGG-16 determines highly adequate results with an increase in the accuracy rate of training and validation.

摘要

脑肿瘤分类是评估危及生命的异常组织和为患者康复提供有效治疗的非常重要和最突出的步骤。为了识别大脑中的病理状况,存在各种医学成像技术。磁共振成像(MRI)由于其出色的图像质量和对电离辐射的独立性,在医学成像中得到了广泛应用。人工智能领域的深度学习作为一个子集,在医学诊断应用中的重要性为从 MRI 检测脑肿瘤到更高的预测率的快速发展铺平了道路。对于脑肿瘤分析和分类,卷积神经网络(CNN)是最广泛和广泛使用的深度学习算法。在这项工作中,我们对基于迁移学习的 CNN 预训练 VGG-16、ResNet-50 和 Inception-v3 模型进行了比较性能分析,用于自动预测大脑中的肿瘤细胞。预训练模型在由 233 张图像组成的 MRI 脑肿瘤图像数据集上进行了演示。我们的论文旨在利用 VGG-16 预训练 CNN 模型定位脑肿瘤。我们的模型将在准确性方面进行评估。作为结果,我们可以估计预训练模型 VGG-16 通过增加训练和验证的准确性,得出非常合适的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/8923754/8a42ee17930f/JHE2022-3264367.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验