Suppr超能文献

模拟MRI采集偏差对结构连接组的影响:协调结构连接组。

Modeling the impact of MRI acquisition bias on structural connectomes: Harmonizing structural connectomes.

作者信息

Patel Jagruti, Schöttner Mikkel, Tarun Anjali, Tourbier Sebastien, Alemán-Gómez Yasser, Hagmann Patric, Bolton Thomas A W

机构信息

Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.

出版信息

Netw Neurosci. 2024 Oct 1;8(3):623-652. doi: 10.1162/netn_a_00368. eCollection 2024.

Abstract

One way to increase the statistical power and generalizability of neuroimaging studies is to collect data at multiple sites or merge multiple cohorts. However, this usually comes with site-related biases due to the heterogeneity of scanners and acquisition parameters, negatively impacting sensitivity. Brain structural connectomes are not an exception: Being derived from T1-weighted and diffusion-weighted magnetic resonance images, structural connectivity is impacted by differences in imaging protocol. Beyond minimizing acquisition parameter differences, removing bias with postprocessing is essential. In this work we create, from the exhaustive Human Connectome Project Young Adult dataset, a resampled dataset of different -values and spatial resolutions, modeling a cohort scanned across multiple sites. After demonstrating the statistical impact of acquisition parameters on connectivity, we propose a linear regression with explicit modeling of -value and spatial resolution, and validate its performance on separate datasets. We show that -value and spatial resolution affect connectivity in different ways and that acquisition bias can be reduced using a linear regression informed by the acquisition parameters while retaining interindividual differences and hence boosting fingerprinting performance. We also demonstrate the generative potential of our model, and its generalization capability in an independent dataset reflective of typical acquisition practices in clinical settings.

摘要

提高神经影像学研究的统计效力和可推广性的一种方法是在多个地点收集数据或合并多个队列。然而,由于扫描仪和采集参数的异质性,这通常会带来与地点相关的偏差,对敏感性产生负面影响。脑结构连接组也不例外:由于结构连接性源自T1加权和扩散加权磁共振图像,因此成像协议的差异会对其产生影响。除了尽量减少采集参数差异外,通过后处理消除偏差至关重要。在这项工作中,我们从详尽的人类连接组计划青年成人数据集中创建了一个不同值和空间分辨率的重采样数据集,模拟在多个地点扫描的队列。在证明采集参数对连接性的统计影响后,我们提出了一种对值和空间分辨率进行显式建模的线性回归,并在单独的数据集中验证其性能。我们表明,值和空间分辨率以不同方式影响连接性,并且可以使用由采集参数告知的线性回归来减少采集偏差,同时保留个体差异,从而提高指纹识别性能。我们还展示了我们模型的生成潜力及其在反映临床环境中典型采集实践的独立数据集中的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4fa/11340995/620c38715f29/netn-8-3-623-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验