Martin-Monier Louis, Pajovic Simo, Abebe Muluneh G, Chen Joshua, Vaidya Sachin, Min Seokhwan, Choi Seou, Kooi Steven E, Maes Bjorn, Hu Juejun, Soljačić Marin, Roques-Carmes Charles
Department of Materials Science and Engineering, MIT, Cambridge, MA, USA.
Department of Mechanical Engineering, MIT, Cambridge, MA, USA.
Nat Commun. 2025 Jul 1;16(1):5750. doi: 10.1038/s41467-025-60953-5.
Scintillators convert X-ray energy into visible light and are critical for imaging technologies. Their widespread use relies on scalable, high-quality manufacturing methods. Nanophotonic scintillators, featuring wavelength-scale nanostructures, can offer improved emission properties such as higher light yield, shorter decay times, and enhanced directionality. However, achieving scalable fabrication of these structures remains challenging. Here, we present a scalable fabrication method for large-area nanophotonic scintillators based on the self-assembly of chalcogenide glass photonic crystals. This technique enables the production of nanophotonic scintillators over wafer-scale areas, achieving a six-fold enhancement in light yield compared to unpatterned scintillators. By studying surface nanofabrication disorder, we show its impact on imaging performance and provide a route towards scintillation enhancements without compromising resolution. We demonstrate the practical applicability of our nanophotonic scintillators through X-ray imaging of biological and inorganic specimens. Our results could enable the industrial implementation of a new generation of nanophotonic-enhanced scintillators.
闪烁体将X射线能量转化为可见光,对成像技术至关重要。它们的广泛应用依赖于可扩展的高质量制造方法。具有波长尺度纳米结构的纳米光子闪烁体可以提供改进的发射特性,如更高的光产额、更短的衰减时间和增强的方向性。然而,实现这些结构的可扩展制造仍然具有挑战性。在这里,我们提出了一种基于硫族化物玻璃光子晶体自组装的大面积纳米光子闪烁体的可扩展制造方法。该技术能够在晶圆尺度区域上生产纳米光子闪烁体,与未图案化的闪烁体相比,光产额提高了六倍。通过研究表面纳米制造无序,我们展示了其对成像性能的影响,并提供了一条在不影响分辨率的情况下增强闪烁的途径。我们通过对生物和无机标本的X射线成像证明了我们的纳米光子闪烁体的实际适用性。我们的结果可能使新一代纳米光子增强闪烁体的工业应用成为可能。