Suppr超能文献

基于MRI的子宫内膜癌分子亚型分类的临床-放射组学深度学习模型的开发与验证

Development and validation of clinical-radiomics deep learning model based on MRI for endometrial cancer molecular subtypes classification.

作者信息

Yue Wenyi, Han Ruxue, Wang Haijie, Liang Xiaoyun, Zhang He, Li Hua, Yang Qi

机构信息

Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

出版信息

Insights Imaging. 2025 May 16;16(1):107. doi: 10.1186/s13244-025-01966-y.

Abstract

OBJECTIVES

This study aimed to develop and validate a clinical-radiomics deep learning (DL) model based on MRI for endometrial cancer (EC) molecular subtypes classification.

METHODS

This multicenter retrospective study included EC patients undergoing surgery, MRI, and molecular pathology diagnosis across three institutions from January 2020 to March 2024. Patients were divided into training, internal, and external validation cohorts. A total of 386 handcrafted radiomics features were extracted from each MR sequence, and MoCo-v2 was employed for contrastive self-supervised learning to extract 2048 DL features per patient. Feature selection integrated selected features into 12 machine learning methods. Model performance was evaluated with the AUC.

RESULTS

A total of 526 patients were included (mean age, 55.01 ± 11.07). The radiomics model and clinical model demonstrated comparable performance across the internal and external validation cohorts, with macro-average AUCs of 0.70 vs 0.69 and 0.70 vs 0.67 (p = 0.51), respectively. The radiomics DL model, compared to the radiomics model, improved AUCs for POLEmut (0.68 vs 0.79), NSMP (0.71 vs 0.74), and p53abn (0.76 vs 0.78) in the internal validation (p = 0.08). The clinical-radiomics DL Model outperformed both the clinical model and radiomics DL model (macro-average AUC = 0.79 vs 0.69 and 0.73, in the internal validation [p = 0.02], 0.74 vs 0.67 and 0.69 in the external validation [p = 0.04]).

CONCLUSIONS

The clinical-radiomics DL model based on MRI effectively distinguished EC molecular subtypes and demonstrated strong potential, with robust validation across multiple centers. Future research should explore larger datasets to further uncover DL's potential.

CRITICAL RELEVANCE STATEMENT

Our clinical-radiomics DL model based on MRI has the potential to distinguish EC molecular subtypes. This insight aids in guiding clinicians in tailoring individualized treatments for EC patients.

KEY POINTS

Accurate classification of EC molecular subtypes is crucial for prognostic risk assessment. The clinical-radiomics DL model outperformed both the clinical model and the radiomics DL model. The MRI features exhibited better diagnostic performance for POLEmut and p53abn.

摘要

目的

本研究旨在开发并验证一种基于磁共振成像(MRI)的临床影像组学深度学习(DL)模型,用于子宫内膜癌(EC)分子亚型分类。

方法

这项多中心回顾性研究纳入了2020年1月至2024年3月期间在三个机构接受手术、MRI检查及分子病理学诊断的EC患者。患者被分为训练组、内部验证组和外部验证组。从每个MR序列中提取了总共386个手工影像组学特征,并采用MoCo-v2进行对比自监督学习,以提取每位患者的2048个DL特征。特征选择将选定的特征整合到12种机器学习方法中。使用曲线下面积(AUC)评估模型性能。

结果

共纳入526例患者(平均年龄55.01±11.07)。影像组学模型和临床模型在内部和外部验证队列中的表现相当,宏观平均AUC分别为0.70对0.69以及0.70对0.67(p = 0.51)。在内部验证中,与影像组学模型相比,影像组学DL模型提高了POLEmut(0.68对0.79)、NSMP(0.71对0.74)和p53abn(0.76对0.78)的AUC(p = 0.08)。临床影像组学DL模型的表现优于临床模型和影像组学DL模型(内部验证中宏观平均AUC = 0.79对0.69和0.73,[p = 0.02];外部验证中为0.74对0.67和0.69,[p = 0.04])。

结论

基于MRI的临床影像组学DL模型有效区分了EC分子亚型,显示出强大潜力,并在多个中心得到了有力验证。未来研究应探索更大的数据集,以进一步挖掘DL的潜力。

关键相关性声明

我们基于MRI的临床影像组学DL模型有潜力区分EC分子亚型。这一见解有助于指导临床医生为EC患者制定个性化治疗方案。

要点

准确分类EC分子亚型对于预后风险评估至关重要。临床影像组学DL模型的表现优于临床模型和影像组学DL模型。MRI特征对POLEmut和p53abn表现出更好的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b143/12084453/7d63cb75a232/13244_2025_1966_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验