Rambert Camille, Nield Joanna M, Narteau Clément, Delorme Pauline, Wiggs Giles F S, Baddock Matthew C, Best Jim, Christensen Kenneth T, Claudin Philippe
Physique et Mécanique des Milieux Hétérogènes, CNRS, Ecole Supérieure de Physique de de Chimie Industrielles de la ville de Paris, Paris Sciences & Lettres Research University, Université Paris Cité, Sorbonne Université, Paris 75005, France.
School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, United Kingdom.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2426143122. doi: 10.1073/pnas.2426143122. Epub 2025 May 16.
Desert surfaces are typically nonuniform, with individual sand dunes generally surrounded by gravel or nonerodible beds. Similarly, beaches vary in composition and moisture that enhances cohesion between the grains. These bed heterogeneities affect the aeolian transport properties greatly and can then influence the emergence and dynamics of bedforms. Here, we propose a model that describes how, due to transport capacity being greater on consolidated than erodible beds, patches of sand can grow, migrate, and spread to form bedforms with meter-scale length. Our approach has a quantitative agreement with high-resolution spatiotemporal observations, where conventional theory would predict the disappearance of these small bedforms. A crucial component of the model is that the transport capacity does not instantly change from one bed configuration to another. Instead, transport capacity develops over a certain distance, which thereby determines the short-term evolution of the bedform. The model predicts various stages in the development of these meter-scale bedforms, and explains how the evolution of bed elevation profiles observed in the field depends on the duration of the wind event and the intensity of the incoming sand flux. Our study thus sheds light on the initiation and dynamics of early-stage bedforms by establishing links between surface properties, emerging sand patterns, and protodunes, commonly observed in coastal and desert landscapes.
沙漠表面通常是不均匀的,单个沙丘周围一般是砾石或不易侵蚀的地层。同样,海滩的成分和湿度也各不相同,这增强了颗粒之间的凝聚力。这些床面异质性极大地影响了风沙输运特性,进而影响床面形态的出现和动态变化。在此,我们提出一个模型,该模型描述了由于固结床面上的输运能力大于易侵蚀床面,沙斑如何生长、迁移和扩散,从而形成长度达米级的床面形态。我们的方法与高分辨率时空观测结果在定量上具有一致性,而传统理论会预测这些小床面形态会消失。该模型的一个关键要素是输运能力不会立即从一种床面形态转变为另一种。相反,输运能力会在一定距离内发展,从而决定了床面形态的短期演变。该模型预测了这些米级床面形态发展的各个阶段,并解释了在野外观察到的床面高程剖面的演变如何取决于风事件的持续时间和输入沙通量的强度。因此,我们的研究通过建立表面特性、出现的沙纹图案和雏形沙丘之间的联系,揭示了早期床面形态的形成和动态变化,这些在海岸和沙漠景观中普遍可见。