Suppr超能文献

从粒径分布推导粒子数浓度:理论与应用

Derivation of Particle Number Concentration from the Size Distribution: Theory and Applications.

作者信息

Farkas Natalia, Kramar John A, Montoro Bustos Antonio R, Caceres George, Johnson Monique, Roesslein Matthias, Petersen Elijah J

机构信息

Microsystems and Nanotechnology Division, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, United States.

United States Department of Agriculture, Forest Products Laboratory, Madison, Wisconsin 53726, United States.

出版信息

Anal Chem. 2025 Jun 3;97(21):10999-11006. doi: 10.1021/acs.analchem.4c05990. Epub 2025 May 16.

Abstract

The particle number concentration (PNC) in a suspension is a key measurand in nanotechnology. A common approach for deriving PNC is to divide the total mass concentration by the per-particle mass, calculated as density times volume. The volume is most frequently derived from the arithmetic mean diameter (AMD) of the size distribution. The harmonic mean volume (HMV) has also been used. Given a known size distribution, we show that the correct PNC is obtained by using the arithmetic mean volume (AMV). The AMD-based volume results in an overestimate in PNC that increases superlinearly with increasing coefficient of variation (CV), reaching 12% at CV = 0.2 for a normal distribution. HMV would yield a much greater overestimate, exceeding 50%. The error in the AMD-derived PNC shows only weak skew dependence, suggesting a simple approximate correction as a function of CV in the common situation where AMD and CV are known but the overall size distribution is unknown. Using published data sets of gold nanoparticles, we demonstrate an overall consistency of ±1.1% in comparing the PNC directly determined by single-particle inductively coupled plasma-mass spectrometry (spICP-MS) and the PNCs derived from AMV using size distributions independently measured by high-resolution scanning electron microscopy and spICP-MS. We further compare AMV and AMD-derived PNCs for well-characterized polystyrene nanoparticle standards, illustrating sensitivity to distributional characteristics along with common errors to avoid. Nanoparticles in environmental samples, food additives, and nanomedicines often have CVs greater than 0.3, for which uncorrected AMD-derived PNC errors can exceed 35%.

摘要

悬浮液中的颗粒数浓度(PNC)是纳米技术中的一个关键测量值。推导PNC的常用方法是将总质量浓度除以单颗粒质量,单颗粒质量通过密度乘以体积来计算。体积最常从尺寸分布的算术平均直径(AMD)得出。也有人使用调和平均体积(HMV)。在已知尺寸分布的情况下,我们表明使用算术平均体积(AMV)可得到正确的PNC。基于AMD的体积会导致PNC被高估,且随着变异系数(CV)的增加呈超线性增加,对于正态分布,当CV = 0.2时高估达到12%。HMV会产生更大的高估,超过50%。基于AMD得出的PNC误差仅显示出较弱的偏度依赖性,这表明在已知AMD和CV但总体尺寸分布未知的常见情况下,可作为CV的函数进行简单的近似校正。使用已发表的金纳米颗粒数据集,我们在比较通过单颗粒电感耦合等离子体质谱法(spICP-MS)直接测定的PNC与使用高分辨率扫描电子显微镜和spICP-MS独立测量的尺寸分布从AMV得出的PNC时,展示了±1.1%的总体一致性。我们还比较了特征明确的聚苯乙烯纳米颗粒标准品基于AMV和AMD得出的PNC,说明了对分布特征的敏感性以及需要避免的常见误差。环境样品、食品添加剂和纳米药物中的纳米颗粒通常CV大于0.3,对于这种情况,未经校正的基于AMD得出的PNC误差可能超过35%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5930/12138877/0c15bec91ec2/ac4c05990_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验