Suppr超能文献

一种用于不确定条件下分配-路由问题的鲁棒优化模型。

A robust optimization model for allocation-routing problems under uncertain conditions.

作者信息

Zhang Tingting, Liu Yanqiu

机构信息

School of Management, Shenyang University of Technology, Shenyang, China.

出版信息

PLoS One. 2025 May 16;20(5):e0322483. doi: 10.1371/journal.pone.0322483. eCollection 2025.

Abstract

Post-earthquake emergency logistics faces significant challenges such as limited resources, uncertain casualty numbers, and time constraints. Developing a scientific and efficient rescue plan is crucial. One of the key issues is integrating facility location and casualty allocation in emergency medical services, an area rarely explored in existing research. This study proposes a robust optimization model to optimize the location of medical facilities and the transfer of casualties within a three-level rescue chain consisting of disaster areas, temporary hospitals, and general hospitals. The model accounts for limited medical resources, casualty classification, and uncertainty in casualty numbers. The Trauma Index Score (TIS) method is used to classify casualties into two groups, and the dynamic changes in their injuries after treatment at temporary hospitals are considered. The objective is to minimize the total TIS of all casualties. A robust optimization approach is applied to derive the corresponding robust model, and its validity is verified through case studies based on the Lushan earthquake. The findings show that data variability and the uncertainty budget play a critical role in determining hospital locations and casualty transportation plans. Temporary hospital capacity significantly influences the objective function more than general hospitals. As the problem size increases, the robust optimization model performs better than the deterministic model. Furthermore, uncertainty in casualty numbers has a more significant impact on serious casualties than moderate casualties. To enhance the model's applicability, it is extended into a two-stage dynamic location-allocation model to better address the complexity of post-disaster scenarios.

摘要

地震后应急物流面临着资源有限、伤亡人数不确定和时间紧迫等重大挑战。制定科学高效的救援计划至关重要。关键问题之一是将应急医疗服务中的设施选址与伤员分配相结合,这是现有研究中很少涉及的领域。本研究提出了一个稳健优化模型,以优化由灾区、临时医院和综合医院组成的三级救援链中的医疗设施选址和伤员转运。该模型考虑了医疗资源有限、伤员分类以及伤亡人数的不确定性。采用创伤指数评分(TIS)方法将伤员分为两组,并考虑了他们在临时医院接受治疗后伤情的动态变化。目标是使所有伤员的总TIS最小化。应用稳健优化方法导出相应的稳健模型,并通过基于芦山地震的案例研究验证了其有效性。研究结果表明,数据变异性和不确定性预算在确定医院选址和伤员运输计划方面起着关键作用。临时医院的容量对目标函数的影响比综合医院更大。随着问题规模的增加,稳健优化模型比确定性模型表现更好。此外,伤亡人数的不确定性对重伤员的影响比对中伤员的影响更大。为了提高模型的适用性,将其扩展为两阶段动态选址-分配模型,以更好地应对灾后场景的复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e18f/12083844/fd4c25f6c7e1/pone.0322483.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验