Suppr超能文献

用于视觉记忆的神经形态有源像素图像传感器阵列。

Neuromorphic Active Pixel Image Sensor Array for Visual Memory.

机构信息

School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78758, Texas, United States.

出版信息

ACS Nano. 2021 Sep 28;15(9):15362-15370. doi: 10.1021/acsnano.1c06758. Epub 2021 Aug 31.

Abstract

Neuromorphic engineering, a methodology for emulating synaptic functions or neural systems, has attracted tremendous attention for achieving next-generation artificial intelligence technologies in the field of electronics and photonics. However, to emulate human visual memory, an active pixel sensor array for neuromorphic photonics has yet to be demonstrated, even though it can implement an artificial neuron array in hardware because individual pixels can act as artificial neurons. Here, we present a neuromorphic active pixel image sensor array (NAPISA) chip based on an amorphous oxide semiconductor heterostructure, emulating the human visual memory. In the 8 × 8 NAPISA chip, each pixel with a select transistor and a neuromorphic phototransistor is based on a solution-processed indium zinc oxide back channel layer and sputtered indium gallium zinc oxide front channel layer. These materials are used as a triggering layer for persistent photoconductivity and a high-performance channel layer with outstanding uniformity. The phototransistors in the pixels exhibit both photonic potentiation and depression characteristics by a constant negative and positive gate bias due to charge trapping/detrapping. The visual memory and forgetting behaviors of the NAPISA can be successfully demonstrated by using the pulsed light stencil method without any software or simulation. This study provides valuable information to other neuromorphic devices and systems for next-generation artificial intelligence technologies.

摘要

神经形态工程是一种模拟突触功能或神经系统的方法,在电子学和光子学领域引起了极大的关注,因为它可以实现下一代人工智能技术。然而,尽管单个像素可以充当人工神经元,实现硬件中的人工神经元阵列,但为了模拟人类视觉记忆,仍需要展示用于神经形态光子学的主动像素传感器阵列。在这里,我们提出了一种基于非晶氧化物半导体异质结的神经形态主动像素图像传感器阵列 (NAPISA) 芯片,用于模拟人类视觉记忆。在 8×8 的 NAPISA 芯片中,每个带有选择晶体管和神经形态光电晶体管的像素都基于溶液处理的氧化锌背沟道层和溅射的铟镓锌氧化物前沟道层。这些材料被用作持久光导的触发层和具有出色均匀性的高性能沟道层。由于电荷捕获/释放,像素中的光电晶体管在施加恒定的负栅极和正栅极偏压时表现出光子增强和抑制特性。通过使用脉冲光模板方法,无需任何软件或模拟,就可以成功演示 NAPISA 的视觉记忆和遗忘行为。这项研究为下一代人工智能技术的其他神经形态设备和系统提供了有价值的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验