基于对比增强CT和临床数据的基于影像组学预测临床N0期≤3cm周围型肺腺癌淋巴结转移

Habitat-based radiomics from contrast-enhanced CT and clinical data to predict lymph node metastasis in clinical N0 peripheral lung adenocarcinoma ≤ 3 cm.

作者信息

Huang Xiaoxin, Huang Xiaoxiao, Wang Kui, Bai Haosheng, Ye Bin, Jin Guanqiao

机构信息

Department of Radiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.

Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.

出版信息

Sci Rep. 2025 May 16;15(1):17085. doi: 10.1038/s41598-025-02181-x.

Abstract

This study aims to develop an integrated model combining habitat-based radiomics and clinical data to predict lymph node metastasis in patients with clinical N0 peripheral lung adenocarcinomas measuring ≤ 3 cm in diameter. We retrospectively analyzed 1132 patients with lung adenocarcinoma from two centers who underwent surgical resection with lymph node dissection and had preoperative computed tomography (CT) scans showing peripheral nodules ≤ 3 cm. Multivariable logistic regression was employed to identify independent risk factors for the clinical model. Radiomics and habitat models were constructed by extracting and analyzing radiomic features and habitat regions from contrast-enhanced CT images. Subsequently, a combined model was developed by integrating habitat-based radiomic features with clinical characteristics. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The habitat model exhibited promising predictive performance for lymph node metastasis, outperforming other standalone models with AUCs of 0.962, 0.865, and 0.853 in the training, validation, and external test cohorts, respectively. The combined model demonstrated superior discriminative ability, achieving the highest AUCs of 0.983, 0.950, and 0.877 for the training, validation, and external test cohorts, respectively. The integration of habitat-based radiomic features with clinical data offers a non-invasive approach to assess the risk of lymph node metastasis, potentially supporting clinicians in optimizing patient management decisions.

摘要

本研究旨在开发一种综合模型,将基于影像组学特征和临床数据相结合,以预测直径≤3 cm的临床N0期周围型肺腺癌患者的淋巴结转移情况。我们回顾性分析了来自两个中心的1132例接受手术切除及淋巴结清扫且术前行计算机断层扫描(CT)显示周围结节≤3 cm的肺腺癌患者。采用多变量逻辑回归来确定临床模型的独立危险因素。通过从增强CT图像中提取和分析影像组学特征及感兴趣区域构建影像组学和感兴趣区域模型。随后,将基于感兴趣区域的影像组学特征与临床特征相结合,开发出一个联合模型。使用受试者工作特征曲线下面积(AUC)评估模型性能。感兴趣区域模型在预测淋巴结转移方面表现出良好的性能,在训练、验证和外部测试队列中的AUC分别为0.962、0.865和0.853,优于其他单一模型。联合模型显示出卓越的鉴别能力,在训练、验证和外部测试队列中的AUC分别达到最高的0.983、0.950和0.877。将基于感兴趣区域的影像组学特征与临床数据相结合,为评估淋巴结转移风险提供了一种非侵入性方法,可能有助于临床医生优化患者管理决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/025a/12084560/1d4cceb6f283/41598_2025_2181_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索