Department of Radiology, The Second Xiangya Hospital, Central South University, N o. 139 Middle Remin Rd, Changsha 410011, China.
Department of Radiology, Xiangtan Central Hospital, Xiangtan City, China.
AJR Am J Roentgenol. 2024 Oct;223(4):e2431675. doi: 10.2214/AJR.24.31675. Epub 2024 Aug 14.
Tumor growth processes result in spatial heterogeneity, with the development of tumor subregions (i.e., habitats) having unique biologic characteristics. The purpose of our study was to develop and validate a habitat model combining tumor and peritumoral radiomic features on chest CT for predicting invasiveness of lung adenocarcinoma. This retrospective study included 1156 patients (mean age, 57.5 years; 464 men, 692 women), from three centers and a public dataset, who underwent chest CT before lung adenocarcinoma resection (variable date ranges across datasets). Patients from one center formed training ( = 500) and validation ( = 215) sets; patients from the other sources formed three external test sets ( = 249, 113, 79). For each patient, a single nodule was manually segmented on chest CT. The nodule segmentation was combined with an automatically generated 4-mm peritumoral region into a whole-volume volume of interest (VOI). A gaussian mixture model (GMM) identified voxel clusters with similar first-order energy across patients. GMM results were used to divide each patient's whole-volume VOI into multiple habitats, which were defined consistently across patients. Radiomic features were extracted from each habitat. After feature selection, a habitat model was developed for predicting invasiveness, with the use of pathologic assessment as a reference. An integrated model was constructed, combining features extracted from habitats and whole-volume VOIs. Model performance was evaluated, including in subgroups based on nodule density (pure ground-glass, part-solid, and solid). The code for habitat imaging and model construction is publicly available (https://github.com/Shangyoulan/Habitat/). Invasive cancer was diagnosed in 626 of 1156 patients. GMM identified four as the optimal number of voxel clusters and thus of per-patient tumor habitats. The habitat model had an AUC of 0.932 in the validation set and 0.881, 0.880, and 0.764 in the three external test sets. The integrated model had an AUC of 0.947 in the validation set and 0.936, 0.908, and 0.800 in the three external test sets. In the three external test sets combined, across nodule densities, AUCs for the habitat model were 0.836-0.869 and for the integrated model were 0.846-0.917. Habitat imaging combining tumoral and peritumoral radiomic features could help predict lung adenocarcinoma invasiveness. Prediction is improved when combining information on tumor subregions and the tumor overall. The findings may aid personalized preoperative assessments to guide clinical decision-making in lung adenocarcinoma.
肿瘤生长过程导致空间异质性,肿瘤亚区(即生境)的发展具有独特的生物学特征。我们的研究目的是开发和验证一种结合胸部 CT 肿瘤和肿瘤周围放射组学特征的生境模型,用于预测肺腺癌的侵袭性。这项回顾性研究包括三个中心和一个公共数据集的 1156 名患者(平均年龄 57.5 岁;464 名男性,692 名女性),他们在肺腺癌切除前接受了胸部 CT(数据集之间的日期范围不同)。一个中心的患者形成了训练集(n=500)和验证集(n=215);其他来源的患者形成了三个外部测试集(n=249、113、79)。对于每个患者,手动在胸部 CT 上对单个结节进行分段。结节分割与自动生成的 4mm 肿瘤周围区域相结合,形成整个感兴趣体积(VOI)。高斯混合模型(GMM)在患者之间识别具有相似一阶能量的体素簇。GMM 结果用于将每个患者的整个 VOI 分为多个生境,这些生境在患者之间是一致定义的。从每个生境中提取放射组学特征。在特征选择后,建立了一个用于预测侵袭性的生境模型,使用病理评估作为参考。构建了一个综合模型,该模型结合了从生境和整个 VOI 中提取的特征。评估了模型性能,包括基于结节密度(纯磨玻璃、部分实性和实性)的亚组。生境成像和模型构建的代码可公开获取(https://github.com/Shangyoulan/Habitat/)。在 1156 名患者中,有 626 名患者被诊断为浸润性癌症。GMM 确定了四个作为最优体素簇数量,因此也是每个患者的肿瘤生境数量。验证集中的生境模型 AUC 为 0.932,三个外部测试集中的 AUC 分别为 0.881、0.880 和 0.764。验证集中的综合模型 AUC 为 0.947,三个外部测试集中的 AUC 分别为 0.936、0.908 和 0.800。在三个外部测试集的组合中,在不同的结节密度下,生境模型的 AUC 为 0.836-0.869,综合模型的 AUC 为 0.846-0.917。结合肿瘤和肿瘤周围放射组学特征的生境成像可以帮助预测肺腺癌的侵袭性。当结合肿瘤亚区和肿瘤整体的信息时,预测会得到改善。这些发现可能有助于进行个性化的术前评估,以指导肺腺癌的临床决策。