Suppr超能文献

[逻辑函数在实验性肿瘤生长中的实际应用]

[Practical application of logistic function to the growth of experimental tumors].

作者信息

Krug H, Taubert G

出版信息

Arch Geschwulstforsch. 1985;55(4):235-44.

PMID:4037994
Abstract

The properties of the logistic law of growth (Verhulst-Pearl) and a simple method for computing of statistical approximation are described. Two parameters are estimated: the generation rate c and the mortality rate c0, although the real biological processes are of greater complexity. The logistic law is modified by an additional term concerning the prefinal decline in the last life span. To prove the curve fitting to tumour growth by the modified logistic function the total number of Ehrlich ascites tumour cells was measured in 144 mice at 12 different times after inoculation. The accuracy of the curve fitting proved to be very good. Therefore the logistic function modified by an additional term for the final stages, is particularly suited for the characterization of Ehrlich ascites tumour growth and its changes.

摘要

描述了逻辑斯蒂增长定律(Verhulst-Pearl)的性质以及一种计算统计近似值的简单方法。估计了两个参数:生成率c和死亡率c0,尽管实际的生物学过程更为复杂。通过一个关于最后寿命期内最终下降的附加项对逻辑斯蒂定律进行了修正。为了证明修正后的逻辑斯蒂函数对肿瘤生长的曲线拟合,在接种后12个不同时间点测量了144只小鼠体内艾氏腹水癌细胞的总数。结果证明曲线拟合的准确性非常好。因此,通过为最后阶段添加附加项而修正的逻辑斯蒂函数,特别适合于表征艾氏腹水肿瘤的生长及其变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验