Home Jessica L, McFadden Geoffrey I, Goodman Christopher D
School of BioSciences University of Melbourne, VIC, 3010, Australia.
School of BioSciences University of Melbourne, VIC, 3010, Australia.
Int J Parasitol Drugs Drug Resist. 2025 May 10;28:100597. doi: 10.1016/j.ijpddr.2025.100597.
The spread of drug-resistant Plasmodium threatens malaria control efforts. Thus, understanding the mechanisms of resistance is crucial for implementing effective treatments and prevention strategies. The prokaryote-like translational machinery encoded by the apicoplast is the apparent target of several antibiotics with antimalarial activity. Among them, doxycycline and clindamycin are widely used for malaria treatment and/or chemoprophylaxis. However, the mechanisms underlying Plasmodium resistance to apicoplast-targeting antibiotics, and the evolution of such resistance mechanisms, remain largely unknown. In this review, we summarise reported cases of resistance to apicoplast translational inhibitors uncovered in either laboratory or clinical settings. We highlight the potential evolutionary pathway of doxycycline resistance, explore why resistance to these antibiotics remains rare in the field, and assess whether expanding their use in malaria treatment and prevention is a viable strategy.
耐药疟原虫的传播威胁着疟疾控制工作。因此,了解耐药机制对于实施有效的治疗和预防策略至关重要。质体编码的类似原核生物的翻译机制显然是几种具有抗疟活性的抗生素的作用靶点。其中,强力霉素和克林霉素被广泛用于疟疾治疗和/或化学预防。然而,疟原虫对质体靶向抗生素的耐药机制以及这种耐药机制的演变在很大程度上仍不为人所知。在这篇综述中,我们总结了在实验室或临床环境中发现的对质体翻译抑制剂耐药的报道病例。我们强调了强力霉素耐药的潜在进化途径,探讨了为什么在野外对这些抗生素的耐药性仍然很少见,并评估了扩大其在疟疾治疗和预防中的使用是否是一个可行的策略。