Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States.
Elife. 2020 Nov 2;9:e60246. doi: 10.7554/eLife.60246.
Doxycycline (DOX) is a key antimalarial drug thought to kill parasites by blocking protein translation in the essential apicoplast organelle. Clinical use is primarily limited to prophylaxis due to delayed second-cycle parasite death at 1-3 µM serum concentrations. DOX concentrations > 5 µM kill parasites with first-cycle activity but are thought to involve off-target mechanisms outside the apicoplast. We report that 10 µM DOX blocks apicoplast biogenesis in the first cycle and is rescued by isopentenyl pyrophosphate, an essential apicoplast product, confirming an apicoplast-specific mechanism. Exogenous iron rescues parasites and apicoplast biogenesis from first- but not second-cycle effects of 10 µM DOX, revealing that first-cycle activity involves a metal-dependent mechanism distinct from the delayed-death mechanism. These results critically expand the paradigm for understanding the fundamental antiparasitic mechanisms of DOX and suggest repurposing DOX as a faster acting antimalarial at higher dosing whose multiple mechanisms would be expected to limit parasite resistance.
多西环素(DOX)是一种关键的抗疟药物,据认为它通过阻断必需的类锥体细胞器中的蛋白质翻译来杀死寄生虫。由于在 1-3 µM 血清浓度下,寄生虫在第二轮周期中死亡延迟,因此临床主要用于预防。DOX 浓度>5 µM 可在第一轮周期中杀死寄生虫,但据认为涉及类锥体之外的非靶标机制。我们报告称,10 µM DOX 在第一轮周期中阻断类锥体生物发生,并被异戊烯焦磷酸(一种必需的类锥体产物)挽救,这证实了一种类锥体特异性机制。外源性铁从 10 µM DOX 的第一轮周期而不是第二轮周期中挽救寄生虫和类锥体生物发生,这表明第一轮周期的活性涉及一种不同于延迟死亡机制的金属依赖性机制。这些结果极大地扩展了我们对 DOX 基本抗寄生虫机制的理解范式,并表明以更高剂量重新利用 DOX 作为更快速作用的抗疟药物,其多种机制有望限制寄生虫耐药性。