Suppr超能文献

用于求解科学偏微分方程的光学神经引擎。

Optical neural engine for solving scientific partial differential equations.

作者信息

Tang Yingheng, Chen Ruiyang, Lou Minhan, Fan Jichao, Yu Cunxi, Nonaka Andrew, Yao Zhi, Gao Weilu

机构信息

Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Department of Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT, USA.

出版信息

Nat Commun. 2025 May 17;16(1):4603. doi: 10.1038/s41467-025-59847-3.

Abstract

Solving partial differential equations (PDEs) is the cornerstone of scientific research and development. Data-driven machine learning (ML) approaches are emerging to accelerate time-consuming and computation-intensive numerical simulations of PDEs. Although optical systems offer high-throughput and energy-efficient ML hardware, their demonstration for solving PDEs is limited. Here, we present an optical neural engine (ONE) architecture combining diffractive optical neural networks for Fourier space processing and optical crossbar structures for real space processing to solve time-dependent and time-independent PDEs in diverse disciplines, including Darcy flow equation, the magnetostatic Poisson's equation in demagnetization, the Navier-Stokes equation in incompressible fluid, Maxwell's equations in nanophotonic metasurfaces, and coupled PDEs in a multiphysics system. We numerically and experimentally demonstrate the capability of the ONE architecture, which not only leverages the advantages of high-performance dual-space processing for outperforming traditional PDE solvers and being comparable with state-of-the-art ML models but also can be implemented using optical computing hardware with unique features of low-energy and highly parallel constant-time processing irrespective of model scales and real-time reconfigurability for tackling multiple tasks with the same architecture. The demonstrated architecture offers a versatile and powerful platform for large-scale scientific and engineering computations.

摘要

求解偏微分方程(PDEs)是科学研究与开发的基石。数据驱动的机器学习(ML)方法正在兴起,以加速耗时且计算密集的PDEs数值模拟。尽管光学系统提供了高通量且节能的ML硬件,但其在求解PDEs方面的演示却很有限。在此,我们提出一种光学神经引擎(ONE)架构,它将用于傅里叶空间处理的衍射光学神经网络与用于实空间处理的光学交叉开关结构相结合,以求解不同学科中与时间相关和与时间无关的PDEs,包括达西流方程、退磁中的静磁泊松方程、不可压缩流体中的纳维 - 斯托克斯方程、纳米光子超表面中的麦克斯韦方程组以及多物理系统中的耦合PDEs。我们通过数值和实验证明了ONE架构的能力,它不仅利用了高性能双空间处理的优势,优于传统的PDE求解器且可与最先进的ML模型相媲美,而且可以使用具有低能耗和高度并行恒时处理独特特性的光学计算硬件来实现,无论模型规模如何,并且具有实时可重构性,能够用相同架构处理多个任务。所展示的架构为大规模科学和工程计算提供了一个通用且强大的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc7/12085686/6a29a33bd6a2/41467_2025_59847_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验