Yildirim Mustafa, Dinc Niyazi Ulas, Oguz Ilker, Psaltis Demetri, Moser Christophe
Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Optics Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Photonics. 2024;18(10):1076-1082. doi: 10.1038/s41566-024-01494-z. Epub 2024 Jul 31.
Deep neural networks have achieved remarkable breakthroughs by leveraging multiple layers of data processing to extract hidden representations, albeit at the cost of large electronic computing power. To enhance energy efficiency and speed, the optical implementation of neural networks aims to harness the advantages of optical bandwidth and the energy efficiency of optical interconnections. In the absence of low-power optical nonlinearities, the challenge in the implementation of multilayer optical networks lies in realizing multiple optical layers without resorting to electronic components. Here we present a novel framework that uses multiple scattering, and which is capable of synthesizing programmable linear and nonlinear transformations concurrently at low optical power by leveraging the nonlinear relationship between the scattering potential, represented by data, and the scattered field. Theoretical and experimental investigations show that repeating the data by multiple scattering enables nonlinear optical computing with low-power continuous-wave light. Moreover, we empirically find that scaling of this optical framework follows a power law.
深度神经网络通过利用多层数据处理来提取隐藏表示取得了显著突破,尽管这是以巨大的电子计算能力为代价的。为了提高能源效率和速度,神经网络的光学实现旨在利用光学带宽的优势和光互连的能源效率。在缺乏低功耗光学非线性的情况下,多层光学网络实现中的挑战在于在不借助电子元件的情况下实现多个光学层。在此,我们提出一种新颖的框架,该框架利用多次散射,并且能够通过利用由数据表示的散射势与散射场之间的非线性关系,在低光功率下同时合成可编程的线性和非线性变换。理论和实验研究表明,通过多次散射重复数据能够实现低功率连续波光的非线性光学计算。此外,我们通过实验发现这种光学框架的缩放遵循幂律。