Suppr超能文献

利用多参数磁共振成像预测滤泡性甲状腺肿瘤及滤泡性甲状腺肿瘤的恶性程度

Prediction of Follicular Thyroid Neoplasm and Malignancy of Follicular Thyroid Neoplasm Using Multiparametric MRI.

作者信息

Song Bin, Zheng Tingting, Wang Hao, Tang Lang, Xie Xiaoli, Fu Qingyin, Liu Weiyan, Wu Pu-Yeh, Zeng Mengsu

机构信息

Department of Radiology, Zhongshan Hospital, Shanghai Medical Imaging Institute, Fudan University, No180, Fenglin Road, Xuhui District, 200032, Shanghai, China.

Department of Radiology, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China.

出版信息

J Imaging Inform Med. 2024 Dec;37(6):2852-2864. doi: 10.1007/s10278-024-01102-0. Epub 2024 Jun 5.

Abstract

The study aims to evaluate multiparametric magnetic resonance imaging (MRI) for differentiating Follicular thyroid neoplasm (FTN) from non-FTN and malignant FTN (MFTN) from benign FTN (BFTN). We retrospectively analyzed 702 postoperatively confirmed thyroid nodules, and divided them into training (n = 482) and validation (n = 220) cohorts. The 133 FTNs were further split into BFTN (n = 116) and MFTN (n = 17) groups. Employing univariate and multivariate logistic regression, we identified independent predictors of FTN and MFTN, and subsequently develop a nomogram for FTN and a risk score system (RSS) for MFTN prediction. We assessed performance of nomogram through its discrimination, calibration, and clinical utility. The diagnostic performance of the RSS for MFTN was further compared with the performance of the Thyroid Imaging Reporting and Data System (TIRADS). The nomogram, integrating independent predictors, demonstrated robust discrimination and calibration in differentiating FTN from non-FTN in both training cohort (AUC = 0.947, Hosmer-Lemeshow P = 0.698) and validation cohort (AUC = 0.927, Hosmer-Lemeshow P = 0.088). Key risk factors for differentiating MFTN from BFTN included tumor size, restricted diffusion, and cystic degeneration. The AUC of the RSS for MFTN prediction was 0.902 (95% CI 0.798-0.971), outperforming five TIRADS with a sensitivity of 73.3%, specificity of 95.1%, accuracy of 92.4%, and positive and negative predictive values of 68.8% and 96.1%, respectively, at the optimal cutoff. MRI-based models demonstrate excellent diagnostic performance for preoperative predicting of FTN and MFTN, potentially guiding clinicians in optimizing therapeutic decision-making.

摘要

本研究旨在评估多参数磁共振成像(MRI)在鉴别滤泡性甲状腺肿瘤(FTN)与非FTN以及恶性FTN(MFTN)与良性FTN(BFTN)方面的作用。我们回顾性分析了702个术后确诊的甲状腺结节,并将其分为训练组(n = 482)和验证组(n = 220)。133个FTN进一步分为BFTN组(n = 116)和MFTN组(n = 17)。采用单变量和多变量逻辑回归分析,我们确定了FTN和MFTN的独立预测因素,随后制定了FTN的列线图和MFTN预测的风险评分系统(RSS)。我们通过鉴别力、校准度和临床实用性评估了列线图的性能。将MFTN的RSS诊断性能与甲状腺影像报告和数据系统(TIRADS)的性能进行了进一步比较。整合了独立预测因素的列线图在训练组(AUC = 0.947,Hosmer-Lemeshow P = 0.698)和验证组(AUC = 0.927,Hosmer-Lemeshow P = 0.088)中均显示出在区分FTN与非FTN方面具有强大的鉴别力和校准度。区分MFTN与BFTN的关键危险因素包括肿瘤大小、扩散受限和囊性变。MFTN预测的RSS的AUC为0.902(95%CI 0.798 - 0.971),在最佳截断值时优于五个TIRADS,其灵敏度为73.3%,特异性为95.1%,准确性为92.4%,阳性预测值和阴性预测值分别为68.8%和96.1%。基于MRI的模型在术前预测FTN和MFTN方面显示出优异的诊断性能,可能会指导临床医生优化治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab89/11612114/038d41fd3e8c/10278_2024_1102_Fig1_HTML.jpg

相似文献

1
Prediction of Follicular Thyroid Neoplasm and Malignancy of Follicular Thyroid Neoplasm Using Multiparametric MRI.
J Imaging Inform Med. 2024 Dec;37(6):2852-2864. doi: 10.1007/s10278-024-01102-0. Epub 2024 Jun 5.
6
Risk Stratification in Patients With Follicular Neoplasm on Cytology: Use of Quantitative Characteristics and Sonographic Patterns.
Front Endocrinol (Lausanne). 2021 Apr 30;12:614630. doi: 10.3389/fendo.2021.614630. eCollection 2021.
8
Validation of Three Scoring Risk-Stratification Models for Thyroid Nodules.
Thyroid. 2017 Dec;27(12):1550-1557. doi: 10.1089/thy.2017.0363.
9
Value of sonographic features in predicting malignancy in thyroid nodules diagnosed as follicular neoplasm on cytology.
Clin Endocrinol (Oxf). 2015 Nov;83(5):711-6. doi: 10.1111/cen.12692. Epub 2014 Dec 29.

引用本文的文献

2
Routine Blood Tests as Predictive Tools for Differentiating Follicular Thyroid Carcinoma From Follicular Adenoma.
Int J Gen Med. 2025 Feb 12;18:733-744. doi: 10.2147/IJGM.S502626. eCollection 2025.

本文引用的文献

2
Differentiate Thyroid Follicular Adenoma from Carcinoma with Combined Ultrasound Radiomics Features and Clinical Ultrasound Features.
J Digit Imaging. 2022 Oct;35(5):1362-1372. doi: 10.1007/s10278-022-00639-2. Epub 2022 Apr 26.
3
Molecular Pathological Diagnosis of Thyroid Tumors Using Spatially Resolved Metabolomics.
Molecules. 2022 Feb 18;27(4):1390. doi: 10.3390/molecules27041390.
5
Clinical outcomes of follicular tumor of uncertain malignant potential of the thyroid: real-world data.
Endocr J. 2022 Jul 28;69(7):757-761. doi: 10.1507/endocrj.EJ21-0723. Epub 2022 Jan 26.
8
Risk Patterns of Distant Metastases in Follicular, Papillary and Medullary Thyroid Cancer.
Horm Metab Res. 2022 Jan;54(1):7-11. doi: 10.1055/a-1668-0094. Epub 2021 Nov 10.
10
Thyroid Nodule Size as a Predictor of Malignancy in Follicular and Hurthle Neoplasms.
Asian Pac J Cancer Prev. 2021 Aug 1;22(8):2597-2602. doi: 10.31557/APJCP.2021.22.8.2597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验