Suppr超能文献

用于预测奶牛胎盘滞留的机器学习方法。

Machine learning approaches for the prediction of retained placenta in dairy cows.

作者信息

Hosseinabadi Mohammad Rahimi, Mahdavi Amir Hossein, Mahnani Abolfazl, Asgari Zeinab, Shahinfar Saleh

机构信息

Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

出版信息

Theriogenology. 2025 Sep 15;244:117484. doi: 10.1016/j.theriogenology.2025.117484. Epub 2025 May 12.

Abstract

Retained placenta (RP) is a reproductive disorder that causes significant financial losses to the dairy industry. Predicting RP risk in cows post-calving is a challenging task. This study aimed to evaluate the predictive capabilities of five machine learning algorithms Naïve Bayes (NB), Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and XGBoost along with Logistic Regression (LR) in predicting RP incidence using data from 363,945 calving records (72,788 affected and 291,092 unaffected) and 16 predictor features from 15 dairy herds in Iran. The performance of these algorithms was assessed based on key metrics, including the area under the receiver operating characteristic curve (AUC), F1-score, and accuracy. The results showed that XGBoost (AUC 0.78) and RF (AUC 0.78) significantly outperformed other algorithms, while XGBoost achieved the highest F1-score (41 %), indicating its potential for reliable RP prediction. Logistic Regression and Naïve Bayes had similar AUC values (0.66 and 0.67, respectively), suggesting they may be less effective for this task. Despite limitations such as missing environmental and management data, the study demonstrates the strong potential of machine learning models, particularly XGBoost, as a decision support tool for RP prediction and management in precision dairy farming.

摘要

胎盘滞留(RP)是一种繁殖障碍疾病,给乳制品行业造成了巨大的经济损失。预测奶牛产后发生RP的风险是一项具有挑战性的任务。本研究旨在评估朴素贝叶斯(NB)、随机森林(RF)、决策树(DT)、支持向量机(SVM)和XGBoost这五种机器学习算法以及逻辑回归(LR),利用来自伊朗15个奶牛场的363945条产犊记录(72788条受影响记录和291092条未受影响记录)和16个预测特征来预测RP发病率的能力。基于关键指标评估了这些算法的性能,包括受试者工作特征曲线下面积(AUC)、F1分数和准确率。结果表明,XGBoost(AUC 0.78)和RF(AUC 0.78)显著优于其他算法,而XGBoost获得了最高的F1分数(41%),表明其在可靠预测RP方面的潜力。逻辑回归和朴素贝叶斯的AUC值相似(分别为0.66和0.67),表明它们在这项任务中可能效果较差。尽管存在环境和管理数据缺失等局限性,但该研究证明了机器学习模型,特别是XGBoost,作为精准奶牛养殖中RP预测和管理的决策支持工具具有强大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验