Suppr超能文献

基于长短期记忆网络-深度神经网络混合模型的紫外通信中的信道均衡

Channel equalization in ultraviolet communication based on LSTM-DNN hybrid model.

作者信息

Zhang Liwei

机构信息

School of Computer Information Engineering, Nanchang Institute of Technology, Nanchang, China.

出版信息

Sci Rep. 2025 May 18;15(1):17226. doi: 10.1038/s41598-025-02159-9.

Abstract

Ultraviolet Communication (UVC) faces the challenge of increased Bit Error Rate (BER) due to signal attenuation caused by atmospheric scattering. In recent years, wireless optical communication technologies have made significant progress in both Ultraviolet (UV) and Visible Light (VL) communication domains. However, traditional channel equalization methods still exhibit limitations when handling complex nonlinear channels. This study proposes a Long Short-Term Memory - Deep Neural Network (LSTM-DNN)-based channel equalization approach to enhance signal recovery accuracy. The model leverages LSTM to process temporal dependencies and combines it with DNN for nonlinear feature extraction, thereby improving its adaptability to single-scattering channels. Experimental results demonstrate that the LSTM-DNN model shows significant advantages in improving signal recovery accuracy and transmission quality compared to conventional methods. These methods include Least Mean Squares (LMS), Recursive Least Squares (RLS), Particle Swarm Optimization (PSO), Support Vector Machine (SVM), and Minimum Mean Squared Error (MMSE). Specifically, the LSTM-DNN model outperforms traditional methods across key performance metrics such as BER and Mean Squared Error (MSE). When the Signal-to-Noise Ratio (SNR) is 0 dB, the LSTM-DNN model achieves a BER of 0.135, significantly lower than LMS (0.45), RLS (0.38), PSO (0.35), SVM (0.25), and MMSE (0.20). As SNR increases, the LSTM-DNN model's BER further decreases, demonstrating strong robustness. When the SNR is 20 dB, the BER of the LSTM-DNN model drops to 0.015, substantially outperforming conventional methods. Additionally, the LSTM-DNN model exhibits the smallest MSE values, with 0.035 at 0 dB SNR and decreasing to 0.004 with higher SNR. On average, the LSTM-DNN model reduces BER by approximately 67.8% and MSE by about 70.8% compared to traditional methods. These results confirm that the LSTM-DNN model significantly improves signal recovery accuracy and transmission quality in UVC systems. Overall, the LSTM-DNN model demonstrates superior performance in UVC applications compared to conventional methods, offering higher precision and stability. This study effectively addresses signal attenuation issues in UVC, significantly enhancing signal recovery accuracy and transmission quality, thus possessing important theoretical value and practical significance.

摘要

由于大气散射导致的信号衰减,紫外线通信(UVC)面临着误码率(BER)增加的挑战。近年来,无线光通信技术在紫外线(UV)和可见光(VL)通信领域都取得了显著进展。然而,传统的信道均衡方法在处理复杂的非线性信道时仍然存在局限性。本研究提出了一种基于长短期记忆-深度神经网络(LSTM-DNN)的信道均衡方法,以提高信号恢复精度。该模型利用LSTM处理时间依赖性,并将其与DNN结合用于非线性特征提取,从而提高其对单散射信道的适应性。实验结果表明,与传统方法相比,LSTM-DNN模型在提高信号恢复精度和传输质量方面具有显著优势。这些方法包括最小均方(LMS)、递归最小二乘(RLS)、粒子群优化(PSO)、支持向量机(SVM)和最小均方误差(MMSE)。具体而言,LSTM-DNN模型在诸如误码率和均方误差(MSE)等关键性能指标上优于传统方法。当信噪比(SNR)为0 dB时,LSTM-DNN模型的误码率达到0.135,显著低于LMS(0.45)、RLS(0.38)、PSO(0.35)、SVM(0.25)和MMSE(0.20)。随着信噪比的增加,LSTM-DNN模型的误码率进一步降低,显示出很强的鲁棒性。当信噪比为20 dB时,LSTM-DNN模型的误码率降至0.015,大大优于传统方法。此外,LSTM-DNN模型的均方误差值最小,在0 dB信噪比时为0.035,随着信噪比的提高降至0.004。平均而言,与传统方法相比,LSTM-DNN模型的误码率降低了约67.8%,均方误差降低了约70.8%。这些结果证实,LSTM-DNN模型显著提高了UVC系统中的信号恢复精度和传输质量。总体而言,与传统方法相比,LSTM-DNN模型在UVC应用中表现出卓越的性能,具有更高的精度和稳定性。本研究有效地解决了UVC中的信号衰减问题,显著提高了信号恢复精度和传输质量,具有重要的理论价值和实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3222/12086184/8ea2db8167df/41598_2025_2159_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验