Suppr超能文献

TCoCPIn揭示了化学蛋白质相互作用网络的拓扑特征以进行新特征发现。

TCoCPIn reveals topological characteristics of chemical protein interaction networks for novel feature discovery.

作者信息

Wang Jianshi, Ohsawa Yukio

机构信息

Department of Systems Innovation, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656, Japan.

出版信息

Sci Rep. 2025 May 18;15(1):17249. doi: 10.1038/s41598-025-01410-7.

Abstract

Understanding chemical-protein interactions (CPIs) is crucial for drug discovery and biological research, yet their complexity often challenges traditional methods. We propose TCoCPIn, a novel framework integrating graph neural networks (GNN) with the comprehensive topological characteristics index (CTC), which combines multiple topological metrics to enhance predictive accuracy. TCoCPIn significantly outperforms traditional and embedding-based methods, achieving higher accuracy, precision, and recall in CPI prediction. A case study highlights its ability to predict potential interactions, such as between ibuprofen and TNF-alpha, demonstrating its utility in identifying novel therapeutic targets. These findings illustrate TCoCPIn's potential to uncover hidden associations and key nodes in CPI networks, providing new opportunities for drug discovery and disease mechanism exploration. Future work will focus on experimental validation and expanding the application of TCoCPIn to other biological systems.

摘要

理解化学-蛋白质相互作用(CPI)对于药物发现和生物学研究至关重要,然而其复杂性常常给传统方法带来挑战。我们提出了TCoCPIn,这是一个将图神经网络(GNN)与综合拓扑特征指数(CTC)相结合的新颖框架,该指数结合了多个拓扑指标以提高预测准确性。TCoCPIn显著优于传统方法和基于嵌入的方法,在CPI预测中实现了更高的准确率、精确率和召回率。一个案例研究突出了其预测潜在相互作用的能力,例如布洛芬与肿瘤坏死因子-α之间的相互作用,证明了其在识别新治疗靶点方面的实用性。这些发现说明了TCoCPIn在揭示CPI网络中隐藏关联和关键节点方面的潜力,为药物发现和疾病机制探索提供了新机会。未来的工作将集中在实验验证以及将TCoCPIn的应用扩展到其他生物系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c9a/12086189/39e9d8d2a185/41598_2025_1410_Fig1_HTML.jpg

相似文献

2
An End-to-End Knowledge Graph Fused Graph Neural Network for Accurate Protein-Protein Interactions Prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2518-2530. doi: 10.1109/TCBB.2024.3486216. Epub 2024 Dec 10.
3
Improving drug-target interaction prediction through dual-modality fusion with InteractNet.
J Bioinform Comput Biol. 2024 Oct;22(5):2450024. doi: 10.1142/S0219720024500240. Epub 2024 Nov 11.
4
ParaCPI: A Parallel Graph Convolutional Network for Compound-Protein Interaction Prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1565-1578. doi: 10.1109/TCBB.2024.3404889. Epub 2024 Oct 9.
5
Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
Curr Comput Aided Drug Des. 2024;20(6):1013-1024. doi: 10.2174/1573409919666230713142255.
6
Effectively Identifying Compound-Protein Interaction Using Graph Neural Representation.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):932-943. doi: 10.1109/TCBB.2022.3198003. Epub 2023 Apr 3.
10
Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network.
PLoS One. 2020 Sep 24;15(9):e0238915. doi: 10.1371/journal.pone.0238915. eCollection 2020.

本文引用的文献

3
Protein family neighborhood analyzer-ProFaNA.
PeerJ. 2023 Jul 21;11:e15715. doi: 10.7717/peerj.15715. eCollection 2023.
6
Biotech in China 2021, at the beginning of the 14th five-year period ("145").
Appl Microbiol Biotechnol. 2021 May;105(10):3971-3985. doi: 10.1007/s00253-021-11317-8. Epub 2021 May 3.
8
Network pharmacology study on the active components of and the mechanism of their effect against cerebral ischemia.
Drug Des Devel Ther. 2019 Sep 5;13:3009-3019. doi: 10.2147/DDDT.S207955. eCollection 2019.
9
Predicting drug-disease associations by using similarity constrained matrix factorization.
BMC Bioinformatics. 2018 Jun 19;19(1):233. doi: 10.1186/s12859-018-2220-4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验