Suppr超能文献

用于鲁棒机器人操纵器控制的混合神经网络-FOPID控制器的蝙蝠优化

Bat optimization of hybrid neural network-FOPID controllers for robust robot manipulator control.

作者信息

Oleiwi Bashra Kadhim, Jasim Mohamed, Azar Ahmad Taher, Ahmed Saim, Mahlous Ahmed Redha

机构信息

Department of Control and System Engineering, University of Technology, Baghdad, Iraq.

College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

Front Robot AI. 2025 May 2;12:1487844. doi: 10.3389/frobt.2025.1487844. eCollection 2025.

Abstract

The position and trajectory tracking control of rigid-link robot manipulators suffers from problems such as poor accuracy, unstable performance, and response caused by unidentified loads and outside disturbances. In this paper, three control structures have been proposed to control a multi-input, multi-output coupled nonlinear three-link rigid robot manipulator (3-LRRM) system and effectively solve the signal chattering in the control signal. To overcome these problems, three hybrid control structures based on combinations between the benefits of fractional order proportional-integral-derivative operations (FOPID) and the benefits of neural networks are proposed for a 3-LRRM. The first hybrid control scheme is a neural network- (NN) like fractional order proportional-integral plus an NN-like fractional order proportional derivative controller (NN-FOPIPD) and the second control scheme is an NN plus FOPID controller (NN + FOPID). In contrast, the third control scheme is the Elman NN-like FOPID controller (ELNN-FOPID). The bat optimization algorithm (BOA) is applied to find the best parameter values of the proposed control scheme by minimizing the performance index of the integral time square error (ITSE). MATLAB software is used to carry out the simulation results. Using the simulation tests, the performance of the suggested controllers is compared without retraining the controller parameters. The robustness of the designed control schemes' performance is assessed utilizing uncertainties in system parameters, outside disturbances, and initial position changes. The results show that the NN-FOPIPD structure demonstrated the best performance among the suggested controllers.

摘要

刚性连杆机器人操纵器的位置和轨迹跟踪控制存在精度差、性能不稳定以及由未知负载和外部干扰引起的响应等问题。本文提出了三种控制结构来控制一个多输入、多输出耦合非线性三连杆刚性机器人操纵器(3-LRRM)系统,并有效解决控制信号中的信号抖动问题。为克服这些问题,针对3-LRRM提出了三种基于分数阶比例积分微分运算(FOPID)优点与神经网络优点相结合的混合控制结构。第一种混合控制方案是类神经网络分数阶比例积分加类神经网络分数阶比例微分控制器(NN-FOPIPD),第二种控制方案是神经网络加FOPID控制器(NN + FOPID)。相比之下,第三种控制方案是类埃尔曼神经网络FOPID控制器(ELNN-FOPID)。应用蝙蝠优化算法(BOA)通过最小化积分时间平方误差(ITSE)的性能指标来找到所提出控制方案的最佳参数值。使用MATLAB软件进行仿真结果。通过仿真测试,在不重新训练控制器参数的情况下比较了所建议控制器的性能。利用系统参数的不确定性、外部干扰和初始位置变化来评估所设计控制方案性能的鲁棒性。结果表明,在所建议的控制器中,NN-FOPIPD结构表现出最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dc6/12082718/ed37a9c64da4/frobt-12-1487844-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验