Suppr超能文献

基于机器学习和复视图像的眼外肌麻痹自动诊断

Automatic diagnosis of extraocular muscle palsy based on machine learning and diplopia images.

作者信息

Jin Xiao-Lu, Li Xue-Mei, Liu Tie-Juan, Zhou Ling-Yun

机构信息

Ocular Motility Disorder Treatment Centre, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.

出版信息

Int J Ophthalmol. 2025 May 18;18(5):757-764. doi: 10.18240/ijo.2025.05.01. eCollection 2025.

Abstract

AIM

To develop different machine learning models to train and test diplopia images and data generated by the computerized diplopia test.

METHODS

Diplopia images and data generated by computerized diplopia tests, along with patient medical records, were retrospectively collected from 3244 cases. Diagnostic models were constructed using logistic regression (LR), decision tree (DT), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep learning (DL) algorithms. A total of 2757 diplopia images were randomly selected as training data, while the test dataset contained 487 diplopia images. The optimal diagnostic model was evaluated using test set accuracy, confusion matrix, and precision-recall curve (P-R curve).

RESULTS

The test set accuracy of the LR, SVM, DT, XGBoost, DL (64 categories), and DL (6 binary classifications) algorithms was 0.762, 0.811, 0.818, 0.812, 0.858 and 0.858, respectively. The accuracy in the training set was 0.785, 0.815, 0.998, 0.965, 0.968, and 0.967, respectively. The weighted precision of LR, SVM, DT, XGBoost, DL (64 categories), and DL (6 binary classifications) algorithms was 0.74, 0.77, 0.83, 0.80, 0.85, and 0.85, respectively; weighted recall was 0.76, 0.81, 0.82, 0.81, 0.86, and 0.86, respectively; weighted F1 score was 0.74, 0.79, 0.82, 0.80, 0.85, and 0.85, respectively.

CONCLUSION

In this study, the 7 machine learning algorithms all achieve automatic diagnosis of extraocular muscle palsy. The DL (64 categories) and DL (6 binary classifications) algorithms have a significant advantage over other machine learning algorithms regarding diagnostic accuracy on the test set, with a high level of consistency with clinical diagnoses made by physicians. Therefore, it can be used as a reference for diagnosis.

摘要

目的

开发不同的机器学习模型,用于训练和测试复视图像以及计算机化复视测试生成的数据。

方法

回顾性收集3244例患者的计算机化复视测试生成的复视图像和数据以及患者病历。使用逻辑回归(LR)、决策树(DT)、支持向量机(SVM)、极端梯度提升(XGBoost)和深度学习(DL)算法构建诊断模型。总共随机选择2757幅复视图像作为训练数据,而测试数据集包含487幅复视图像。使用测试集准确率、混淆矩阵和精确率-召回率曲线(P-R曲线)评估最佳诊断模型。

结果

LR、SVM、DT、XGBoost、DL(64类别)和DL(6二元分类)算法的测试集准确率分别为0.762、0.811、0.818、0.812、0.858和0.858。训练集准确率分别为0.785、0.815、0.998、0.965、0.968和0.967。LR、SVM、DT、XGBoost、DL(64类别)和DL(6二元分类)算法的加权精确率分别为0.74、0.77、0.83、0.80、0.85和0.85;加权召回率分别为0.76、0.81、0.82、0.81、0.86和0.86;加权F1分数分别为0.74、0.79、0.82、0.80、0.85和0.85。

结论

在本研究中,7种机器学习算法均实现了眼外肌麻痹的自动诊断。DL(64类别)和DL(6二元分类)算法在测试集诊断准确率方面比其他机器学习算法具有显著优势,与医生做出的临床诊断具有高度一致性。因此,可作为诊断参考。

相似文献

1
Automatic diagnosis of extraocular muscle palsy based on machine learning and diplopia images.
Int J Ophthalmol. 2025 May 18;18(5):757-764. doi: 10.18240/ijo.2025.05.01. eCollection 2025.
2
Prediction and feature selection of low birth weight using machine learning algorithms.
J Health Popul Nutr. 2024 Oct 12;43(1):157. doi: 10.1186/s41043-024-00647-8.
3
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Apr;36(4):345-352. doi: 10.3760/cma.j.cn121430-20230930-00832.
4
[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Jul;35(7):696-701. doi: 10.3760/cma.j.cn121430-20221219-01104.
7
Non-Contrasted CT Radiomics for SAH Prognosis Prediction.
Bioengineering (Basel). 2023 Aug 16;10(8):967. doi: 10.3390/bioengineering10080967.
8
Comparison of Machine Learning Models Using Diffusion-Weighted Images for Pathological Grade of Intrahepatic Mass-Forming Cholangiocarcinoma.
J Imaging Inform Med. 2024 Oct;37(5):2252-2263. doi: 10.1007/s10278-024-01103-z. Epub 2024 Apr 16.
9
Epileptic Patient Activity Recognition System Using Extreme Learning Machine Method.
Biomedicines. 2023 Mar 7;11(3):816. doi: 10.3390/biomedicines11030816.

本文引用的文献

2
A new method based on deep learning and image processing for detection of strabismus with the Hirschberg test.
Photodiagnosis Photodyn Ther. 2023 Dec;44:103805. doi: 10.1016/j.pdpdt.2023.103805. Epub 2023 Sep 22.
3
Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images.
Bioengineering (Basel). 2023 Jun 8;10(6):699. doi: 10.3390/bioengineering10060699.
5
Automated photographic analysis of inferior oblique overaction based on deep learning.
Quant Imaging Med Surg. 2023 Jan 1;13(1):329-338. doi: 10.21037/qims-22-467. Epub 2022 Oct 28.
6
A multi-feature deep learning system to enhance glaucoma severity diagnosis with high accuracy and fast speed.
J Biomed Inform. 2022 Dec;136:104233. doi: 10.1016/j.jbi.2022.104233. Epub 2022 Oct 21.
7
Automated Measurement of Ocular Movements Using Deep Learning-Based Image Analysis.
Curr Eye Res. 2022 Sep;47(9):1346-1353. doi: 10.1080/02713683.2022.2053165. Epub 2022 Jul 27.
8
Semantic Segmentation of Extraocular Muscles on Computed Tomography Images Using Convolutional Neural Networks.
Diagnostics (Basel). 2022 Jun 26;12(7):1553. doi: 10.3390/diagnostics12071553.
10
DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity.
Ophthalmology. 2022 May;129(5):571-584. doi: 10.1016/j.ophtha.2021.12.017. Epub 2022 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验