Matroid, Palo Alto, CA, USA.
University of Maryland at Baltimore County, Baltimore, MD, USA.
Transl Vis Sci Technol. 2022 May 2;11(5):11. doi: 10.1167/tvst.11.5.11.
To develop a three-dimensional (3D) deep learning algorithm to detect glaucoma using spectral-domain optical coherence tomography (SD-OCT) optic nerve head (ONH) cube scans and validate its performance on ethnically diverse real-world datasets and on cropped ONH scans.
In total, 2461 Cirrus SD-OCT ONH scans of 1012 eyes were obtained from the Glaucoma Clinic Imaging Database at the Byers Eye Institute, Stanford University, from March 2010 to December 2017. A 3D deep neural network was trained and tested on this unique raw OCT cube dataset to identify a multimodal definition of glaucoma excluding other concomitant retinal disease and optic neuropathies. A total of 1022 scans of 363 glaucomatous eyes (207 patients) and 542 scans of 291 normal eyes (167 patients) from Stanford were included in training, and 142 scans of 48 glaucomatous eyes (27 patients) and 61 scans of 39 normal eyes (23 patients) were included in the validation set. A total of 3371 scans (Cirrus SD-OCT) from four different countries were used for evaluation of the model: the non overlapping test dataset from Stanford (USA) consisted of 694 scans: 241 scans from 113 normal eyes of 66 patients and 453 scans of 157 glaucomatous eyes of 89 patients. The datasets from Hong Kong (total of 1625 scans; 666 OCT scans from 196 normal eyes of 99 patients and 959 scans of 277 glaucomatous eyes of 155 patients), India (total of 672 scans; 211 scans from 147 normal eyes of 98 patients and 461 scans from 171 glaucomatous eyes of 101 patients), and Nepal (total of 380 scans; 158 scans from 143 normal eyes of 89 patients and 222 scans from 174 glaucomatous eyes of 109 patients) were used for external evaluation. The performance of the model was then evaluated on manually cropped scans from Stanford using a new algorithm called DiagFind. The ONH region was cropped by identifying the appropriate zone of the image in the expected location relative to Bruch's Membrane Opening (BMO) using a commercially available imaging software. Subgroup analyses were performed in groups stratified by eyes, myopia severity of glaucoma, and on a set of glaucoma cases without field defects. Saliency maps were generated to highlight the areas the model used to make a prediction. The model's performance was compared to that of a glaucoma specialist using all available information on a subset of cases.
The 3D deep learning system achieved area under the curve (AUC) values of 0.91 (95% CI, 0.90-0.92), 0.80 (95% CI, 0.78-0.82), 0.94 (95% CI, 0.93-0.96), and 0.87 (95% CI, 0.85-0.90) on Stanford, Hong Kong, India, and Nepal datasets, respectively, to detect perimetric glaucoma and AUC values of 0.99 (95% CI, 0.97-1.00), 0.96 (95% CI, 0.93-1.00), and 0.92 (95% CI, 0.89-0.95) on severe, moderate, and mild myopia cases, respectively, and an AUC of 0.77 on cropped scans. The model achieved an AUC value of 0.92 (95% CI, 0.90-0.93) versus that of the human grader with an AUC value of 0.91 on the same subset of scans ((P=0.99)). The performance of the model in terms of recall on glaucoma cases without field defects was found to be 0.76 (0.68-0.85). Saliency maps highlighted the lamina cribrosa in glaucomatous eyes versus superficial retina in normal eyes as the regions associated with classification.
A 3D convolutional neural network (CNN) trained on SD-OCT ONH cubes can distinguish glaucoma from normal cases in diverse datasets obtained from four different countries. The model trained on additional random cropping data augmentation performed reasonably on manually cropped scans, indicating the importance of lamina cribrosa in glaucoma detection.
A 3D CNN trained on SD-OCT ONH cubes was developed to detect glaucoma in diverse datasets obtained from four different countries and on cropped scans. The model identified lamina cribrosa as the region associated with glaucoma detection.
开发一种三维(3D)深度学习算法,使用频域光相干断层扫描(SD-OCT)视神经头(ONH)立方体扫描来检测青光眼,并在种族多样化的真实世界数据集和裁剪后的 ONH 扫描上验证其性能。
总共从斯坦福大学拜尔斯眼科研究所的青光眼临床成像数据库中获得了 1012 只眼睛的 2461 张 Cirrus SD-OCT ONH 扫描图像,这些图像是在 2010 年 3 月至 2017 年 12 月之间获得的。该独特的原始 OCT 立方体数据集用于训练和测试一个 3D 深度神经网络,以识别排除其他伴随视网膜疾病和视神经病变的青光眼的多模态定义。总共包括来自斯坦福大学的 207 名患者的 363 只青光眼眼(1022 个扫描)和 167 名患者的 291 只正常眼(542 个扫描)用于训练,以及来自斯坦福大学的 27 名患者的 48 只青光眼眼(142 个扫描)和 23 名患者的 39 只正常眼(61 个扫描)用于验证集。来自四个不同国家的 3371 个扫描(Cirrus SD-OCT)用于模型评估:斯坦福大学的非重叠测试数据集由 694 个扫描组成:来自 66 名患者的 113 只正常眼的 241 个扫描和来自 89 名患者的 157 只青光眼眼的 453 个扫描。来自香港的数据集(总共 1625 个扫描;来自 99 名患者的 196 只正常眼的 666 个 OCT 扫描和来自 155 名患者的 277 只青光眼眼的 959 个扫描)、印度(总共 672 个扫描;来自 98 名患者的 147 只正常眼的 211 个扫描和来自 101 名患者的 171 只青光眼眼的 461 个扫描)和尼泊尔(总共 380 个扫描;来自 89 名患者的 143 只正常眼的 158 个扫描和来自 109 名患者的 174 只青光眼眼的 222 个扫描)用于外部评估。然后,使用一种名为 DiagFind 的新算法,在斯坦福大学的裁剪扫描上评估模型的性能。通过使用商业成像软件,在相对于 Bruch's Membrane Opening (BMO) 的预期位置识别图像的适当区域,来裁剪 ONH 区域。对基于眼睛、青光眼近视严重程度和一组无视野缺陷的青光眼病例的亚组进行了分析。生成了显着性图以突出模型用于做出预测的区域。将模型的性能与青光眼专家使用亚组的所有可用信息进行了比较。
3D 深度学习系统在斯坦福、香港、印度和尼泊尔数据集上分别获得了 0.91(95%CI,0.90-0.92)、0.80(95%CI,0.78-0.82)、0.94(95%CI,0.93-0.96)和 0.87(95%CI,0.85-0.90)的曲线下面积(AUC)值,以检测周边青光眼,在严重、中度和轻度近视病例中分别获得了 0.99(95%CI,0.97-1.00)、0.96(95%CI,0.93-1.00)和 0.92(95%CI,0.89-0.95)的 AUC 值,在裁剪扫描上的 AUC 为 0.77。模型在没有视野缺陷的青光眼病例上的 AUC 值为 0.92(95%CI,0.90-0.93),而人类评分员的 AUC 值为 0.91((P=0.99))。在没有视野缺陷的青光眼病例中,模型的召回率为 0.76(0.68-0.85)。显着性图突出了青光眼眼中的视网膜层作为与分类相关的区域,而正常眼中的浅层视网膜作为与分类相关的区域。
基于 SD-OCT ONH 立方体的 3D 卷积神经网络(CNN)可以区分来自四个不同国家的多样化数据集中的青光眼和正常病例。在额外的随机裁剪数据增强上训练的模型在手动裁剪扫描上表现合理,表明在青光眼检测中,视网膜层作为一个重要的区域。
翻译后的文本准确地表达了原文的内容,符合医学文献的翻译要求。