Barati Aboulfazl, Godfrey Deacon S, Dashtimoghadam Erfan
Center for Materials and Manufacturing Sciences, Departments of Chemistry and Physics, Troy University, Troy, Alabama 36082, United States.
ACS Omega. 2025 May 1;10(18):18404-18418. doi: 10.1021/acsomega.4c10726. eCollection 2025 May 13.
Plastic pollution has become a pressing global crisis that threatens biodiversity and reduces the adaptability of the ecosystem to climate change. Additive manufacturing technologies hold promise in the context of distributed recycling and sustainability. The present work elaborates on developing low-cost, robust feedstocks with improved toughness based on postconsumer polyethylene terephthalate, PET, and micronized scrap tire rubber powder (MRP) for additive manufacturing. The effects of a series of nonreactive (polystyrene--polybutadiene--polystyrene (SBS) and polystyrene--poly(ethylene--butylene)--polystyrene (SEBS)) and reactive compatibilizers (polystyrene--poly(ethylene--butylene)--polystyrene--maleic anhydride (SEBS--MA), poly(ethylene--glycidyl methacrylate) (EGMA), and poly(ethylene--methyl acrylate--glycidyl methacrylate) (EMAGMA)) on the mechanical and rheological properties of PET/MRP composites were investigated. PET/MRP composites comprising compatibilizers with glycidyl moieties showed relatively higher impact strength and elongation at break. Rheological measurements revealed that incorporating MRP into PET in the presence of compatibilizers remarkably increases melt viscosity, making the composite formulation suitable for extrusion processing. Differential scanning calorimetry results disclosed that reactive compatibilizers favorably reduce composite crystallinity compared to non-reactive ones, which are ascribed to the formation of long-chain branches. The potential of PET/MRP filaments for fused deposition modeling was screened by using a low-budget desktop 3D printer. It is envisioned that the findings of this study will improve resource efficiency and the supply chain to achieve a waste-free economy and sustainability.
塑料污染已成为一个紧迫的全球危机,威胁着生物多样性,并降低了生态系统对气候变化的适应能力。增材制造技术在分布式回收和可持续性方面具有潜力。目前的工作详细阐述了基于消费后聚对苯二甲酸乙二酯(PET)和微粉化废旧轮胎橡胶粉(MRP)开发具有改善韧性的低成本、坚固原料,用于增材制造。研究了一系列非反应性(聚苯乙烯-聚丁二烯-聚苯乙烯(SBS)和聚苯乙烯-聚(乙烯-丁烯)-聚苯乙烯(SEBS))和反应性增容剂(聚苯乙烯-聚(乙烯-丁烯)-聚苯乙烯-马来酸酐(SEBS-MA)、聚(乙烯-甲基丙烯酸缩水甘油酯)(EGMA)和聚(乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯)(EMAGMA))对PET/MRP复合材料力学和流变性能的影响。包含带有缩水甘油基部分增容剂的PET/MRP复合材料表现出相对较高的冲击强度和断裂伸长率。流变学测量表明,在增容剂存在下将MRP加入PET中会显著提高熔体粘度,使复合配方适合挤出加工。差示扫描量热法结果表明,与非反应性增容剂相比,反应性增容剂有利于降低复合材料的结晶度,这归因于长链支化的形成。使用低成本桌面3D打印机筛选了PET/MRP长丝用于熔融沉积建模的潜力。预计本研究的结果将提高资源效率和供应链,以实现无废经济和可持续性。