Eroglu Ozay, Dere H Sevval, Ozen Afike Ayca, Aslan Sema, Abdul Halim Siti Nadiah, Erkarslan Ugur, Kara Subasat Hulya
Department of Energy, Molecular Nano-Materials Laboratory, Mugla Sıtkı Kocman University, Mugla 48000, Turkey.
Department of Chemistry, Mugla Sıtkı Kocman University, Muğla 48000, Turkey.
ACS Omega. 2025 Mar 28;10(18):18583-18595. doi: 10.1021/acsomega.4c11211. eCollection 2025 May 13.
With the increasing importance of energy storage technologies, the demand for supercapacitors combining high energy density with fast reversible rechargeability is increasing. However, conventional multistep synthesis methods increase the production costs and limit the practical application of these technologies. To solve this problem, we developed two innovative electrodes, UiO-66/PVDF/PGE and metal-organic framework (MOF)-199/PVDF/PGE. These electrodes produced with a one-step electrospinning technique provide a cost-effective solution by simplifying the fabrication process and reducing costs. The successful incorporation of MOFs into the polymer matrix was confirmed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses, and a homogeneous nanofiber morphology was observed by scanning electron microscope (SEM) imaging. Thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) analyses showed significant improvements in the thermal and structural stability of the composites. The electrochemical properties were analyzed in detail by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The electrospun UiO-66/PVDF/PGE electrode demonstrated a high specific capacitance of 1619.26 F/g with exceptional cycling performance at 1 A/g current density, while the MOF-199/PVDF/PGE electrode achieved a value of 933.19 F/g. Both electrodes maintained 99.16 and 102.04% of their initial capacitance after 3000 cycles, respectively, exhibiting outstanding stability for long-term energy storage applications. These results demonstrate that UiO-66/PVDF/PGE and MOF-199/PVDF/PGE are promising as scalable, high-performance, and cost-effective electrode materials for supercapacitor technologies.
随着储能技术的重要性日益增加,对兼具高能量密度和快速可逆充电能力的超级电容器的需求也在不断增长。然而,传统的多步合成方法增加了生产成本,并限制了这些技术的实际应用。为了解决这个问题,我们开发了两种创新电极,即UiO-66/PVDF/PGE和金属有机框架(MOF)-199/PVDF/PGE。通过一步电纺技术制备的这些电极,通过简化制造工艺和降低成本提供了一种经济高效的解决方案。傅里叶变换红外(FTIR)和X射线衍射(XRD)分析证实了MOF成功掺入聚合物基体中,扫描电子显微镜(SEM)成像观察到均匀的纳米纤维形态。热重分析(TGA)和动态力学分析(DMA)表明复合材料的热稳定性和结构稳定性有显著提高。通过循环伏安法(CV)和电化学阻抗谱(EIS)方法详细分析了电化学性能。电纺的UiO-66/PVDF/PGE电极在1 A/g电流密度下表现出1619.26 F/g的高比电容和优异的循环性能,而MOF-199/PVDF/PGE电极的比电容值为933.19 F/g。在3000次循环后,两个电极分别保持其初始电容的99.16%和102.04%,在长期储能应用中表现出出色的稳定性。这些结果表明,UiO-66/PVDF/PGE和MOF-199/PVDF/PGE作为超级电容器技术中可扩展、高性能且经济高效的电极材料具有广阔前景。