Humayun Huriya, Begum Bushra, Bilal Salma, Shah Anwar Ul Haq Ali, Röse Philipp
National Centre of Excellence in Physical Chemistry 1, University of Peshawar, Peshawar 25120, Pakistan.
Institute of Chemical Science, University of Peshawar, Peshawar 25120, Pakistan.
Nanomaterials (Basel). 2023 Feb 3;13(3):618. doi: 10.3390/nano13030618.
Conducting polymers integrated with metal oxides create opportunities for hybrid capacitive electrodes. In this work, we report a one-pot oxidative polymerization for the synthesis of integrated conductive polyindole/nickel oxide (PIn/NiO), polyindole/zinc oxide (PIn/ZnO), and polyindole/nickel oxide/zinc oxide (PNZ). The polymers were analyzed thoroughly for their composition and physical as well as chemical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermogravimetric analysis (TGA). The PIn and its composites were processed into electrodes, and their use in symmetrical supercapacitors in two- and three-electrode setups was evaluated by cyclic voltammetry (CV), galvanostatic discharge (GCD), and electrochemical impedance spectroscopy (EIS). The best electrochemical charge storage capability was found for the ternary PNZ composite. The high performance directly correlates with its uniformly shaped nanofibrous structure and high crystallinity. For instance, the symmetrical supercapacitor fabricated with PNZ hybrid electrodes shows a high specific capacitance of 310.9 F g at 0.5 A g with an energy density of 42.1 Wh kg, a power density of 13.2 kW kg, and a good cycling stability of 78.5% after 5000 cycles. This report presents new electrode materials for advanced supercapacitor technology based on these results.
与金属氧化物集成的导电聚合物为混合电容电极创造了机会。在这项工作中,我们报告了一种一锅法氧化聚合反应,用于合成集成导电聚吲哚/氧化镍(PIn/NiO)、聚吲哚/氧化锌(PIn/ZnO)和聚吲哚/氧化镍/氧化锌(PNZ)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、紫外可见光谱(UV-Vis)和热重分析(TGA)对聚合物的组成、物理和化学性质进行了全面分析。将PIn及其复合材料加工成电极,并通过循环伏安法(CV)、恒电流放电(GCD)和电化学阻抗谱(EIS)评估它们在两电极和三电极装置的对称超级电容器中的应用。发现三元PNZ复合材料具有最佳的电化学电荷存储能力。其高性能与其均匀形状的纳米纤维结构和高结晶度直接相关。例如,用PNZ混合电极制备的对称超级电容器在0.5 A g时显示出310.9 F g的高比电容,能量密度为42.1 Wh kg,功率密度为13.2 kW kg,在5000次循环后具有78.5%的良好循环稳定性。基于这些结果,本报告提出了用于先进超级电容器技术的新型电极材料。