Suppr超能文献

在不同环境下使用高效网络轻量级模型(EfficientNet-LITE)和核极端学习机支持向量机(KE-SVM)对马铃薯叶部病害进行优化分类

Optimized classification of potato leaf disease using EfficientNet-LITE and KE-SVM in diverse environments.

作者信息

Sangar Gopal, Rajasekar Velswamy

机构信息

Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani, Chennai, India.

出版信息

Front Plant Sci. 2025 May 2;16:1499909. doi: 10.3389/fpls.2025.1499909. eCollection 2025.

Abstract

INTRODUCTION

Potatoes are a vital global product, and prompt identification of foliar diseases is imperative for sustaining healthy yields. Computer vision is essential in precision agriculture, facilitating automated disease diagnosis and decision-making through real-time data. Inconsistent data in uncontrolled contexts undermines classic image classification techniques, hindering precise illness detection.

METHODS

We present a novel model that integrates EfficientNet-LITE for enhanced feature extraction with KE-SVM Optimization for effective classification. KE-SVM Optimization cross-references misclassified instances with correct classifications across kernels, iteratively refining the confusion matrix to improve accuracy across all classes. EfficientNet-LITE improves the model's emphasis on pertinent features through Channel Attention (CA) and 1-D Local Binary Pattern (LBP), while preserving computational economy with a reduced model size of 12.46 MB, fewer parameters at 3.11M, and a diminished FLOP count of 359.69 MFLOPs.

RESULTS

Before optimization, the SVM classifier attained an accuracy of 79.38% on uncontrolled data and 99.07% on laboratory-controlled data. Following the implementation of KE-SVM Optimization, accuracy increased to 87.82% for uncontrolled data and 99.54% for laboratory-controlled data.

DISCUSSION

The model's efficiency and improved accuracy render it especially appropriate for settings with constrained computational resources, such as mobile or edge devices, offering substantial practical advantages for precision agriculture.

摘要

引言

土豆是一种重要的全球性农产品,及时识别叶部病害对于维持健康产量至关重要。计算机视觉在精准农业中至关重要,它通过实时数据促进自动病害诊断和决策制定。在不受控制的环境中数据不一致会削弱经典图像分类技术,阻碍精确的病害检测。

方法

我们提出了一种新颖的模型,该模型集成了用于增强特征提取的EfficientNet-LITE和用于有效分类的KE-SVM优化。KE-SVM优化在各个内核之间将错误分类的实例与正确分类进行交叉参考,迭代优化混淆矩阵以提高所有类别的准确性。EfficientNet-LITE通过通道注意力(CA)和一维局部二值模式(LBP)提高模型对相关特征的重视程度,同时保持计算经济性,模型大小减少到12.46MB,参数减少到311万个,浮点运算次数减少到359.69百万次浮点运算。

结果

在优化之前,支持向量机分类器在不受控制的数据上的准确率为79.38%,在实验室控制的数据上为99.07%。实施KE-SVM优化后,不受控制的数据准确率提高到87.82%,实验室控制的数据准确率提高到99.54%。

讨论

该模型的效率和提高的准确率使其特别适用于计算资源有限的环境,如移动或边缘设备,为精准农业提供了巨大的实际优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/540b/12081437/f4ef41722579/fpls-16-1499909-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验