Suppr超能文献

基于深度学习的玉米作物病害识别方法。

Deep learning-based approach for identification of diseases of maize crop.

机构信息

Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.

ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.

出版信息

Sci Rep. 2022 Apr 15;12(1):6334. doi: 10.1038/s41598-022-10140-z.

Abstract

In recent years, deep learning techniques have shown impressive performance in the field of identification of diseases of crops using digital images. In this work, a deep learning approach for identification of in-field diseased images of maize crop has been proposed. The images were captured from experimental fields of ICAR-IIMR, Ludhiana, India, targeted to three important diseases viz. Maydis Leaf Blight, Turcicum Leaf Blight and Banded Leaf and Sheath Blight in a non-destructive manner with varied backgrounds using digital cameras and smartphones. In order to solve the problem of class imbalance, artificial images were generated by rotation enhancement and brightness enhancement methods. In this study, three different architectures based on the framework of 'Inception-v3' network were trained with the collected diseased images of maize using baseline training approach. The best-performed model achieved an overall classification accuracy of 95.99% with average recall of 95.96% on the separate test dataset. Furthermore, we compared the performance of the best-performing model with some pre-trained state-of-the-art models and presented the comparative results in this manuscript. The results reported that best-performing model performed quite better than the pre-trained models. This demonstrates the applicability of baseline training approach of the proposed model for better feature extraction and learning. Overall performance analysis suggested that the best-performed model is efficient in recognizing diseases of maize from in-field images even with varied backgrounds.

摘要

近年来,深度学习技术在使用数字图像识别作物疾病方面表现出了令人印象深刻的性能。在这项工作中,提出了一种用于识别玉米田间病害图像的深度学习方法。这些图像是使用数字相机和智能手机以非破坏性方式从印度 ICAR-IIMR 的实验田中采集的,目标是三种重要的疾病,即玉米叶斑病、玉米纹枯病和条斑病和鞘腐病,并具有不同的背景。为了解决类不平衡问题,通过旋转增强和亮度增强方法生成了人工图像。在这项研究中,使用基线训练方法,基于“Inception-v3”网络框架的三种不同架构对收集的玉米病害图像进行了训练。在单独的测试数据集上,表现最好的模型实现了 95.99%的整体分类准确率和 95.96%的平均召回率。此外,我们还将表现最好的模型与一些预先训练的最先进模型的性能进行了比较,并在本文中给出了比较结果。结果表明,表现最好的模型明显优于预先训练的模型。这证明了所提出模型的基线训练方法在更好的特征提取和学习方面的适用性。总体性能分析表明,即使在不同的背景下,表现最好的模型也能有效地从田间图像中识别玉米疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e0a/9012772/982c3acbd4b0/41598_2022_10140_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验