Suppr超能文献

基于深度图神经网络辅助生物力学建模的单次 X 射线投影实时肝脏肿瘤定位。

Real-time liver tumor localization via a single x-ray projection using deep graph neural network-assisted biomechanical modeling.

机构信息

Medical Artificial Intelligence and Automation Laboratory and Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.

出版信息

Phys Med Biol. 2022 May 24;67(11). doi: 10.1088/1361-6560/ac6b7b.

Abstract

Real-time imaging is highly desirable in image-guided radiotherapy, as it provides instantaneous knowledge of patients' anatomy and motion during treatments and enables online treatment adaptation to achieve the highest tumor targeting accuracy. Due to extremely limited acquisition time, only one or few x-ray projections can be acquired for real-time imaging, which poses a substantial challenge to localize the tumor from the scarce projections. For liver radiotherapy, such a challenge is further exacerbated by the diminished contrast between the tumor and the surrounding normal liver tissues. Here, we propose a framework combining graph neural network-based deep learning and biomechanical modeling to track liver tumor in real-time from a single onboard x-ray projection.Liver tumor tracking is achieved in two steps. First, a deep learning network is developed to predict the liver surface deformation using image features learned from the x-ray projection. Second, the intra-liver deformation is estimated through biomechanical modeling, using the liver surface deformation as the boundary condition to solve tumor motion by finite element analysis. The accuracy of the proposed framework was evaluated using a dataset of 10 patients with liver cancer.The results show accurate liver surface registration from the graph neural network-based deep learning model, which translates into accurate, fiducial-less liver tumor localization after biomechanical modeling (<1.2 (±1.2) mm average localization error).The method demonstrates its potentiality towards intra-treatment and real-time 3D liver tumor monitoring and localization. It could be applied to facilitate 4D dose accumulation, multi-leaf collimator tracking and real-time plan adaptation. The method can be adapted to other anatomical sites as well.

摘要

实时成像在图像引导放疗中是非常理想的,因为它可以提供患者在治疗过程中解剖结构和运动的即时信息,并能够进行在线治疗调整,以实现最高的肿瘤靶向准确性。由于采集时间极其有限,实时成像只能采集一个或几个 X 射线投影,这给从稀少的投影中定位肿瘤带来了很大的挑战。对于肝脏放疗,由于肿瘤与周围正常肝脏组织之间的对比度降低,这种挑战更加严重。在这里,我们提出了一个结合基于图神经网络的深度学习和生物力学建模的框架,用于从单次机载 X 射线投影中实时跟踪肝脏肿瘤。肝脏肿瘤跟踪分为两步完成。首先,开发了一个深度学习网络,使用从 X 射线投影中学习到的图像特征来预测肝脏表面变形。其次,通过生物力学建模来估计肝脏内的变形,将肝脏表面变形作为边界条件,通过有限元分析来求解肿瘤运动。使用 10 名肝癌患者的数据集评估了所提出框架的准确性。结果表明,基于图神经网络的深度学习模型可以实现准确的肝脏表面配准,经过生物力学建模后,可以实现准确的、无标记的肝脏肿瘤定位(<1.2(±1.2)mm 平均定位误差)。该方法展示了其在治疗过程中实时 3D 肝脏肿瘤监测和定位的潜力。它可以应用于促进 4D 剂量积累、多叶准直器跟踪和实时计划调整。该方法也可以适应其他解剖部位。

相似文献

2
Real-time liver tumor localization via combined surface imaging and a single x-ray projection.
Phys Med Biol. 2023 Mar 9;68(6):065002. doi: 10.1088/1361-6560/acb889.
3
Real-time liver motion estimation via deep learning-based angle-agnostic X-ray imaging.
Med Phys. 2023 Nov;50(11):6649-6662. doi: 10.1002/mp.16691. Epub 2023 Sep 13.
5
Enhancing liver tumor localization accuracy by prior-knowledge-guided motion modeling and a biomechanical model.
Quant Imaging Med Surg. 2019 Jul;9(7):1337-1349. doi: 10.21037/qims.2019.07.04.
6
4D liver tumor localization using cone-beam projections and a biomechanical model.
Radiother Oncol. 2019 Apr;133:183-192. doi: 10.1016/j.radonc.2018.10.040. Epub 2018 Nov 14.
8
Predictive online 3D target tracking with population-based generative networks for image-guided radiotherapy.
Int J Comput Assist Radiol Surg. 2021 Jul;16(7):1213-1225. doi: 10.1007/s11548-021-02425-x. Epub 2021 Jun 10.
9
Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT).
Radiother Oncol. 2019 Nov;140:167-174. doi: 10.1016/j.radonc.2019.06.027. Epub 2019 Jul 11.

引用本文的文献

1
When liver disease diagnosis encounters deep learning: Analysis, challenges, and prospects.
ILIVER. 2023 Mar 4;2(1):73-87. doi: 10.1016/j.iliver.2023.02.002. eCollection 2023 Mar.
3
Deep learning-based Fast Volumetric Image Generation for Image-guided Proton Radiotherapy.
IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):973-983. doi: 10.1109/trpms.2024.3439585.
6
Artificial intelligence-based motion tracking in cancer radiotherapy: A review.
J Appl Clin Med Phys. 2024 Nov;25(11):e14500. doi: 10.1002/acm2.14500. Epub 2024 Aug 28.
7
Dynamic CBCT imaging using prior model-free spatiotemporal implicit neural representation (PMF-STINR).
Phys Med Biol. 2024 May 23;69(11):115030. doi: 10.1088/1361-6560/ad46dc.
8
Deep learning-based target tracking with X-ray images for radiotherapy: a narrative review.
Quant Imaging Med Surg. 2024 Mar 15;14(3):2671-2692. doi: 10.21037/qims-23-1489. Epub 2024 Mar 7.
9
A review of the clinical introduction of 4D particle therapy research concepts.
Phys Imaging Radiat Oncol. 2024 Jan 10;29:100535. doi: 10.1016/j.phro.2024.100535. eCollection 2024 Jan.
10
Graph Neural Networks in Cancer and Oncology Research: Emerging and Future Trends.
Cancers (Basel). 2023 Dec 15;15(24):5858. doi: 10.3390/cancers15245858.

本文引用的文献

2
AAPM Task Group 264: The safe clinical implementation of MLC tracking in radiotherapy.
Med Phys. 2021 May;48(5):e44-e64. doi: 10.1002/mp.14625. Epub 2021 Mar 23.
4
Deformable MR-CBCT prostate registration using biomechanically constrained deep learning networks.
Med Phys. 2021 Jan;48(1):253-263. doi: 10.1002/mp.14584. Epub 2020 Nov 27.
5
MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose.
Radiother Oncol. 2021 Feb;155:131-137. doi: 10.1016/j.radonc.2020.10.036. Epub 2020 Nov 3.
7
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver.
Clin Oncol (R Coll Radiol). 2020 Dec;32(12):792-804. doi: 10.1016/j.clon.2020.09.008. Epub 2020 Oct 7.
8
X-ray2Shape: Reconstruction of 3D Liver Shape from a Single 2D Projection Image.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1608-1611. doi: 10.1109/EMBC44109.2020.9176655.
9
Feasibility of 4D CT simulation with synchronized intravenous contrast injection in hepatocellular carcinoma.
Rep Pract Oncol Radiother. 2020 Mar-Apr;25(2):293-298. doi: 10.1016/j.rpor.2019.12.006. Epub 2019 Dec 13.
10
Regression model-based real-time markerless tumor tracking with fluoroscopic images for hepatocellular carcinoma.
Phys Med. 2020 Feb;70:196-205. doi: 10.1016/j.ejmp.2020.02.001. Epub 2020 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验