Suppr超能文献

单原子金属-氮-碳催化剂上电化学产过氧化氢的活性-选择性趋势

Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts.

作者信息

Sun Yanyan, Silvioli Luca, Sahraie Nastaran Ranjbar, Ju Wen, Li Jingkun, Zitolo Andrea, Li Shuang, Bagger Alexander, Arnarson Logi, Wang Xingli, Moeller Tim, Bernsmeier Denis, Rossmeisl Jan, Jaouen Frédéric, Strasser Peter

机构信息

Department of Chemistry , Technical University of Berlin , 10623 Berlin , Germany.

Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark.

出版信息

J Am Chem Soc. 2019 Aug 7;141(31):12372-12381. doi: 10.1021/jacs.9b05576. Epub 2019 Jul 29.

Abstract

Nitrogen-doped carbon materials featuring atomically dispersed metal cations (M-N-C) are an emerging family of materials with potential applications for electrocatalysis. The electrocatalytic activity of M-N-C materials toward four-electron oxygen reduction reaction (ORR) to HO is a mainstream line of research for replacing platinum-group-metal-based catalysts at the cathode of fuel cells. However, fundamental and practical aspects of their electrocatalytic activity toward two-electron ORR to HO, a future green "dream" process for chemical industry, remain poorly understood. Here we combined computational and experimental efforts to uncover the trends in electrochemical HO production over a series of M-N-C materials (M = Mn, Fe, Co, Ni, and Cu) exclusively comprising atomically dispersed M-N sites from molecular first-principles to bench-scale electrolyzers operating at industrial current density. We investigated the effect of the nature of a 3d metal within a series of M-N-C catalysts on the electrocatalytic activity/selectivity for ORR (HO and HO products) and HO reduction reaction (HORR). Co-N-C catalyst was uncovered with outstanding HO productivity considering its high ORR activity, highest HO selectivity, and lowest HORR activity. The activity-selectivity trend over M-N-C materials was further analyzed by density functional theory, providing molecular-scale understandings of experimental volcano trends for four- and two-electron ORR. The predicted binding energy of HO* intermediate over Co-N-C catalyst is located near the top of the volcano accounting for favorable two-electron ORR. The industrial HO productivity over Co-N-C catalyst was demonstrated in a microflow cell, exhibiting an unprecedented production rate of more than 4 mol peroxide g h at a current density of 50 mA cm.

摘要

具有原子分散金属阳离子的氮掺杂碳材料(M-N-C)是一类新兴材料,在电催化领域具有潜在应用价值。M-N-C材料对四电子氧还原反应(ORR)生成H₂O的电催化活性是燃料电池阴极替代铂族金属基催化剂的主流研究方向。然而,对于它们在两电子ORR生成H₂O₂这一未来化工绿色“梦想”过程中的电催化活性,其基本原理和实际情况仍知之甚少。在此,我们结合计算和实验方法,揭示了一系列仅包含原子分散M-N位点的M-N-C材料(M = Mn、Fe、Co、Ni和Cu)在从分子第一性原理到工业电流密度下运行的 bench-scale 电解槽中电化学生成H₂O₂的趋势。我们研究了一系列M-N-C催化剂中3d金属的性质对ORR(H₂O和H₂O₂产物)和H₂O₂还原反应(HORR)的电催化活性/选择性的影响。考虑到其高ORR活性、最高的H₂O₂选择性和最低的HORR活性,发现Co-N-C催化剂具有出色的H₂O₂生成能力。通过密度泛函理论进一步分析了M-N-C材料上的活性-选择性趋势,为四电子和两电子ORR的实验火山趋势提供了分子尺度的理解。预测Co-N-C催化剂上H₂O₂*中间体的结合能位于火山顶部附近,这有利于两电子ORR。在微流电池中展示了Co-N-C催化剂的工业H₂O₂生成能力,在50 mA cm²的电流密度下表现出前所未有的超过4 mol过氧化物 g⁻¹ h⁻¹的生成速率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验