Suppr超能文献

用于燃料电池和可充电电池的单原子催化剂:原理、进展与机遇

Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities.

作者信息

Wang Yuchao, Chu Fulu, Zeng Jian, Wang Qijun, Naren Tuoya, Li Yueyang, Cheng Yi, Lei Yongpeng, Wu Feixiang

机构信息

State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.

School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, P. R. China.

出版信息

ACS Nano. 2021 Jan 26;15(1):210-239. doi: 10.1021/acsnano.0c08652. Epub 2021 Jan 6.

Abstract

Owing to the energy crisis and environmental pollution, developing efficient and robust electrochemical energy storage (or conversion) systems is urgently needed but still very challenging. Next-generation electrochemical energy storage and conversion devices, mainly including fuel cells, metal-air batteries, metal-sulfur batteries, and metal-ion batteries, have been viewed as promising candidates for future large-scale energy applications. All these systems are operated through one type of chemical conversion mechanism, which is currently limited by poor reaction kinetics. Single atom catalysts (SACs) perform maximum atom efficiency and well-defined active sites. They have been employed as electrode components to enhance the redox kinetics and adjust the interactions at the reaction interface, boosting device performance. In this Review, we briefly summarize the related background knowledge, motivation and working principle toward next-generation electrochemical energy storage (or conversion) devices, including fuel cells, Zn-air batteries, Al-air batteries, Li-air batteries, Li-CO batteries, Li-S batteries, and Na-S batteries. While pointing out the remaining challenges in each system, we clarify the importance of SACs to solve these development bottlenecks. Then, we further explore the working principle and current progress of SACs in various device systems. Finally, future opportunities and perspectives of SACs in next-generation electrochemical energy storage and conversion devices are discussed.

摘要

由于能源危机和环境污染,开发高效且强大的电化学能量存储(或转换)系统迫在眉睫,但仍极具挑战性。下一代电化学能量存储和转换装置,主要包括燃料电池、金属空气电池、金属硫电池和金属离子电池,已被视为未来大规模能源应用的有前途的候选者。所有这些系统都通过一种化学转换机制运行,目前该机制受到反应动力学较差的限制。单原子催化剂(SACs)具有最大的原子效率和明确的活性位点。它们已被用作电极组件,以增强氧化还原动力学并调节反应界面处的相互作用,从而提高装置性能。在本综述中,我们简要总结了下一代电化学能量存储(或转换)装置的相关背景知识、动机和工作原理,包括燃料电池、锌空气电池、铝空气电池、锂空气电池、锂二氧化碳电池、锂硫电池和钠硫电池。在指出每个系统中仍然存在的挑战的同时,我们阐明了单原子催化剂对于解决这些发展瓶颈的重要性。然后,我们进一步探讨了单原子催化剂在各种装置系统中的工作原理和当前进展。最后,讨论了单原子催化剂在下一代电化学能量存储和转换装置中的未来机遇和前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验