Jiang Pan, Huang Yuyan, Jiang Xiangqiong, Yan Huijie, Liu Shufang, Chen Zuoming, Wu Xin, Zhou Xiantai, Ye Yu-Xin, Ouyang Gangfeng
School of Chemical Engineering and Technology, ICGME, Sun Yat-sen University, Zhuhai, 519082, P. R. China.
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Adv Sci (Weinh). 2025 Aug;12(30):e03929. doi: 10.1002/advs.202503929. Epub 2025 May 19.
The photocatalytic synthesis of hydrogen peroxide (HO) at room temperature has garnered significant attention as an environmentally friendly alternative to traditional anthraquinone oxidation processes. However, the low exciton dissociation efficiency at room temperature often hinders photocatalytic performance. In this study, it is demonstrated that tuning the substitution sites of electron donors in Donor-Acceptor (D-A) conjugated polymers can significantly enhance exciton dissociation by reducing exciton activation energy, which facilitates the spontaneous separation of excitons at room temperature. For comparison, materials with exciton separation energies ≈89 meV exhibit a hydrogen peroxide production rate of 2692 µmol·g·h. In contrast, the main material developed in this work, O-PTAQ, demonstrates a substantially lower exciton separation energy of 22 meV, resulting in a hydrogen peroxide production rate of 4989 µmol·g·h under ambient conditions, outperforming most reported organic semiconductors. This enhancement is attributed to the increased electron delocalization in the electron donors, which lowers exciton activation energy to promote efficient exciton separation. The findings highlight the critical role of molecular-level structural tuning in enhancing exciton dissociation, providing a promising strategy for the development of high-efficiency photocatalysts for sustainable HO production.
室温下光催化合成过氧化氢(HO)作为传统蒽醌氧化工艺的一种环境友好替代方法,已引起广泛关注。然而,室温下激子解离效率较低常常阻碍光催化性能。在本研究中,结果表明,通过降低激子活化能来调节给体-受体(D-A)共轭聚合物中电子给体的取代位点,可显著增强激子解离,这有利于室温下激子的自发分离。作为对比,激子分离能约为89 meV的材料的过氧化氢产率为2692 µmol·g·h。相比之下,本工作开发的主要材料O-PTAQ的激子分离能低得多,仅为22 meV,在环境条件下过氧化氢产率达到4989 µmol·g·h,优于大多数已报道的有机半导体。这种增强归因于电子给体中电子离域的增加,这降低了激子活化能以促进高效激子分离。这些发现突出了分子水平结构调节在增强激子解离中的关键作用,为开发用于可持续HO生产的高效光催化剂提供了一种有前景的策略。