Zhang Liwei, Huang Yuyan, Yan Huijie, Cheng Yingyi, Ye Yu-Xin, Zhu Fang, Ouyang Gangfeng
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China.
School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, 519082, China.
Adv Mater. 2024 Jul;36(29):e2401162. doi: 10.1002/adma.202401162. Epub 2024 May 13.
Removing organic micropollutants from water through photocatalysis is hindered by catalyst instability and substantial residuals from incomplete mineralization. Here, a novel water treatment paradigm, the unified heterogeneous self-Fenton process (UHSFP), which achieved an impressive 32% photon utilization efficiency at 470 nm, and a significant 94% mineralization of organic micropollutants-all without the continual addition of oxidants and iron ions is presented. In UHSFP, the active species differs fundamentally from traditional photocatalytic processes. One electron acceptor unit of photocatalyst acquires only one photogenerated electron to convert into oxygen-centered organic radical (OCOR), then spontaneously completing subsequent processes, including pollutant degradation, hydrogen peroxide generation, activation, and mineralization of organic micropollutants. By bolstering electron-transfer capabilities and diminishing catalyst affinity for oxygen in the photocatalytic process, the generation of superoxide radicals is effectively suppressed, preventing detrimental attacks on the catalyst. This study introduces an innovative and cost-effective strategy for the efficient and stable mineralization of organic micropollutants, eliminating the necessity for continuous chemical inputs, providing a new perspective on water treatment technologies.
通过光催化从水中去除有机微污染物受到催化剂不稳定性和不完全矿化产生的大量残留物的阻碍。在此,提出了一种新型水处理范式——统一非均相自芬顿过程(UHSFP),该过程在470nm处实现了令人印象深刻的32%的光子利用效率,以及显著的94%的有机微污染物矿化率,且无需持续添加氧化剂和铁离子。在UHSFP中,活性物种与传统光催化过程有根本不同。光催化剂的一个电子受体单元仅获取一个光生电子以转化为以氧为中心的有机自由基(OCOR),然后自发完成后续过程,包括污染物降解、过氧化氢生成、有机微污染物的活化和矿化。通过增强光催化过程中的电子转移能力并降低催化剂对氧的亲和力,有效地抑制了超氧自由基的产生,防止了对催化剂的有害攻击。本研究为有机微污染物的高效稳定矿化引入了一种创新且具有成本效益的策略,消除了持续化学投入的必要性,为水处理技术提供了新的视角。