Leopold Maike, Pfeiffer Felix, Muschiol Elisabeth Christine, Wölke Christian, Yan Peng, Brüning Kai, Nowak Sascha, Esselen Melanie, Winter Martin, Cekic-Laskovic Isidora
Helmholtz-Institute Münster (IMD-4), Forschungszentrum Jülich GmbH, Corrensstraße 48, 48149, Münster, Germany.
Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
Small. 2025 Sep;21(35):e2505254. doi: 10.1002/smll.202505254. Epub 2025 Jul 10.
Lithium nickel manganese oxide (LNMO) and silicon/graphite (SiGr) are promising active materials for high voltage lithium ion batteries attributed to the high operating potential versus Li|Li of LNMO and the high specific discharge capacity of silicon. However, this cell chemistry exhibits rapid capacity fading, primarily attributed to electrolyte decomposition at the high operating voltage of 4.9 V. Here, a fluorinated electrolyte containing lithium hexafluorophosphate as conducting salt, as well as fluoroethylene carbonate and methyl (2,2,2-trifluoroethyl) carbonate as electrolyte solvents is introduced. The influence of the selected solvents on the interphase formation and galvanostatic cycling performance is analyzed using complementary electrochemical, spectroscopic, and safety-related techniques. The presence of fluorinated solvents enables a high oxidative stability of an electrolyte up to 5.0 V versus Li|Li and effective interphase formation. In comparison to cells with non-fluorinated electrolytes, the galvanostatic cycling performance demonstrates a considerable improvement, leading to a doubling of the achievable cycle life. Roll-over failure observed in the electrolyte with non-fluorinated solvents could be effectively suppressed for over 300 cycles and the resulting electrolyte formulation with fluorinated solvents is non-flammable. Additionally, by fine-tuning the electrolyte formulation, the extent of acetylcholinesterase inhibition, an indication of substance toxicity of the aged electrolyte could be reduced.
锂镍锰氧化物(LNMO)和硅/石墨(SiGr)是有前景的用于高压锂离子电池的活性材料,这归因于LNMO相对于Li|Li的高工作电位以及硅的高比放电容量。然而,这种电池化学表现出快速的容量衰减,主要归因于在4.9 V的高工作电压下电解质分解。在此,引入了一种含六氟磷酸锂作为导电盐以及氟代碳酸乙烯酯和甲基(2,2,2-三氟乙基)碳酸酯作为电解质溶剂的氟化电解质。使用互补的电化学、光谱学和安全相关技术分析了所选溶剂对界面形成和恒电流循环性能的影响。氟化溶剂的存在使电解质在相对于Li|Li高达5.0 V时具有高氧化稳定性,并能有效形成界面。与使用非氟化电解质的电池相比,恒电流循环性能有显著改善,导致可实现的循环寿命翻倍。在使用非氟化溶剂的电解质中观察到的翻滚失效在超过300次循环中可得到有效抑制,并且所得的含氟化溶剂的电解质配方不易燃。此外,通过微调电解质配方,可以降低乙酰胆碱酯酶抑制程度,这是老化电解质物质毒性的一个指标。