Suppr超能文献

基于个体和连续介质模型中异质细胞群体生长的移动前沿的空间隔离

Spatial Segregation Across Travelling Fronts in Individual-Based and Continuum Models for the Growth of Heterogeneous Cell Populations.

作者信息

Carrillo José A, Lorenzi Tommaso, Macfarlane Fiona R

机构信息

Mathematical Institute, University of Oxford, Oxford, UK.

Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Turin, Italy.

出版信息

Bull Math Biol. 2025 May 19;87(6):77. doi: 10.1007/s11538-025-01452-y.

Abstract

We consider a partial differential equation model for the growth of heterogeneous cell populations subdivided into multiple distinct discrete phenotypes. In this model, cells preferentially move towards regions where they are less compressed, and thus their movement occurs down the gradient of the cellular pressure. The cellular pressure is defined as a weighted sum of the densities (i.e. the volume fractions) of cells with different phenotypes. To translate into mathematical terms the idea that cells with distinct phenotypes have different morphological and mechanical properties, both the cell mobility and the weighted amount the cells contribute to the cellular pressure vary with their phenotype. We formally derive this model as the continuum limit of an on-lattice individual-based model, where cells are represented as single agents undergoing a branching biased random walk corresponding to phenotype-dependent and pressure-regulated cell division, death, and movement. Then, we study travelling wave solutions whereby cells with different phenotypes are spatially segregated across the invading front. Finally, we report on numerical simulations of the two models, demonstrating excellent agreement between them and the travelling wave analysis. The results presented here indicate that inter-cellular variability in mobility can support the maintenance of spatial segregation across invading fronts, whereby cells with a higher mobility drive invasion by occupying regions closer to the front edge.

摘要

我们考虑一个用于异质细胞群体生长的偏微分方程模型,该群体被细分为多个不同的离散表型。在这个模型中,细胞优先向压缩程度较小的区域移动,因此它们的移动沿着细胞压力梯度方向进行。细胞压力被定义为具有不同表型的细胞密度(即体积分数)的加权和。为了将具有不同表型的细胞具有不同形态和力学特性这一概念转化为数学术语,细胞迁移率以及细胞对细胞压力的加权贡献量都随其表型而变化。我们将这个模型正式推导为基于格点的个体模型的连续极限,其中细胞被表示为单个主体,经历与表型相关且受压力调节的细胞分裂、死亡和移动的分支有偏随机游走。然后,我们研究行波解,通过它不同表型的细胞在入侵前沿在空间上被分隔开。最后,我们报告这两个模型的数值模拟结果,证明它们与行波分析之间具有良好的一致性。此处给出的结果表明,细胞迁移率的细胞间变异性能够支持在入侵前沿维持空间分隔,其中迁移率较高的细胞通过占据更靠近前沿边缘的区域来驱动入侵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e5a/12089248/fc1a83577162/11538_2025_1452_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验