Suppr超能文献

尖锐前沿集体细胞迁移和侵袭的离散与连续数学模型。

Discrete and continuous mathematical models of sharp-fronted collective cell migration and invasion.

作者信息

Simpson Matthew J, Murphy Keeley M, McCue Scott W, Buenzli Pascal R

机构信息

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

R Soc Open Sci. 2024 May 15;11(5):240126. doi: 10.1098/rsos.240126. eCollection 2024 May.

Abstract

Mathematical models describing the spatial spreading and invasion of populations of biological cells are often developed in a continuum modelling framework using reaction-diffusion equations. While continuum models based on linear diffusion are routinely employed and known to capture key experimental observations, linear diffusion fails to predict well-defined sharp fronts that are often observed experimentally. This observation has motivated the use of nonlinear degenerate diffusion; however, these nonlinear models and the associated parameters lack a clear biological motivation and interpretation. Here, we take a different approach by developing a stochastic discrete lattice-based model incorporating biologically inspired mechanisms and then deriving the reaction-diffusion continuum limit. Inspired by experimental observations, agents in the simulation deposit extracellular material, which we call a , locally onto the lattice, and the motility of agents is taken to be proportional to the substrate density. Discrete simulations that mimic a two-dimensional circular barrier assay illustrate how the discrete model supports both smooth and sharp-fronted density profiles depending on the rate of substrate deposition. Coarse-graining the discrete model leads to a novel partial differential equation (PDE) model whose solution accurately approximates averaged data from the discrete model. The new discrete model and PDE approximation provide a simple, biologically motivated framework for modelling the spreading, growth and invasion of cell populations with well-defined sharp fronts. Open-source Julia code to replicate all results in this work is available on GitHub.

摘要

描述生物细胞群体空间扩散和侵袭的数学模型通常是在连续介质建模框架中使用反应扩散方程来构建的。虽然基于线性扩散的连续介质模型经常被使用,并且已知能够捕捉关键的实验观察结果,但线性扩散无法预测实验中经常观察到的明确的尖锐前沿。这一观察结果促使人们使用非线性退化扩散;然而,这些非线性模型及其相关参数缺乏明确的生物学动机和解释。在这里,我们采用了一种不同的方法,通过开发一个基于随机离散晶格的模型,该模型纳入了受生物学启发的机制,然后推导出反应扩散连续介质极限。受实验观察的启发,模拟中的主体将我们称为a的细胞外物质局部沉积到晶格上,并且主体的运动性被认为与底物密度成正比。模拟二维圆形屏障试验的离散模拟说明了离散模型如何根据底物沉积速率支持平滑和尖锐前沿的密度分布。对离散模型进行粗粒化会得到一个新的偏微分方程(PDE)模型,其解能准确近似离散模型的平均数据。新的离散模型和PDE近似为模拟具有明确尖锐前沿的细胞群体的扩散、生长和侵袭提供了一个简单的、具有生物学动机的框架。可在GitHub上获取用于复制本文所有结果的开源Julia代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b9/11286127/3f3e53650bc6/rsos.240126.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验